Effect of steel fiber-volume fraction and distribution on flexural behavior of Ultra-high performance fiber reinforced concrete by digital image correlation technique

被引:36
|
作者
Meng, Shaoqiang [1 ,2 ]
Jiao, Chujie [1 ]
Ouyang, Xiaowei [2 ]
Niu, Yanfei [1 ]
Fu, Jiyang [2 ]
机构
[1] Guangzhou Univ, Sch Civil Engn, Guangzhou 510006, Peoples R China
[2] Guangzhou Univ, Res Ctr Wind Engn & Engn Vibrat, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Ultra-high performance fiber reinforced concrete; Steel fiber-volume fraction; Fiber distribution; Flexural behavior; Digital image correlation; UHPC; PREDICTION; ALIGNMENT; TENSILE; LENGTH; BEAMS;
D O I
10.1016/j.conbuildmat.2021.126281
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper investigated the effect of steel fiber-volume fraction (0.5%, 1.0%, 1.5%, and 2.0%) and distribution on the flexural behavior of ultra-high performance fiber reinforced concrete (UHPFRC). Digital image correlation (DIC) was used to obtain the crack propagation behavior of UHPFRC under bending load. With increasing fiber-volume fraction, the crack-propagation path becomes more zigzagged. Based on the flexural response of UHPFRC and fiber distribution on the crack plane, a correlation between fiber distribution characteristics and flexural behavior was discussed. The fibers number per unit area for S0.5, S1.0, S1.5, and S2.0 were 7, 14, 21, and 31, respectively. The fiber pull-out length in cracked zone with different fiber-volume fractions was about 3.56 mm. The fiber orientation factor (eta(theta)) of S0.5, S1.0, S1.5, and S2.0 were 0.80, 0.79, 0.69 and 0.61 respectively. A quadratic relationship between the eta(theta) and the fiber pull-out number is proposed. The flexural-tensile strength ratio (beta) is about 2.52 for UHPFRC exhibiting deflection hardening behavior. Finally, the post-cracking tensile behavior of UHPFRC was analyzed based on the matrix softening and fiber bridging curve models by the inverse analysis method. The tension softening curves obtained from the tri-linear softening curve analysis exhibited good agreement with the experimental results.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] Flexural behavior of RC beams retrofitted by ultra-high performance fiber-reinforced concrete
    Meraji, Leila
    Afshin, Hasan
    Abedi, Karim
    COMPUTERS AND CONCRETE, 2019, 24 (02): : 159 - 172
  • [12] Flexural behavior of ultra-high performance hybrid fiber reinforced concrete at the ambient and elevated temperature
    Li, Ye
    Yang, En-Hua
    Tan, Kang Hai
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 250
  • [14] Flexural toughness of hybrid fiber-reinforced ultra-high performance concrete
    Deng Z.
    Xue H.
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2023, 44 (08): : 1288 - 1294
  • [15] Static and fatigue flexural performance of ultra-high performance fiber reinforced concrete slabs
    Wang, Yan
    Shao, Xudong
    Cao, Junhui
    Zhao, Xudong
    Qiu, Minghong
    ENGINEERING STRUCTURES, 2021, 231
  • [16] Influence of Fiber Volume Fraction and Aggregate Size on Flexural Behavior of High Strength Steel Fiber-Reinforced Concrete (SFRC)
    Joon, Seok Jang
    Jun, Yeon Yun
    Do, Hyun Yun
    ADVANCED MATERIALS DESIGN AND MECHANICS II, 2013, 372 : 223 - 226
  • [17] The Effect of Fiber Volume Fraction on Fiber Distribution in Steel Fiber Reinforced Self-Compacting Concrete
    Zhao, Yun
    Bi, Jihong
    Zhou, Junlong
    Liu, Xiaomin
    Li, Xiaopeng
    Geng, Wenbin
    BUILDINGS, 2023, 13 (05)
  • [18] Hybrid fiber use on flexural behavior of ultra high performance fiber reinforced concrete beams
    Turker, Kaan
    Hasgul, Umut
    Birol, Tamer
    Yavas, Altug
    Yazici, Halit
    COMPOSITE STRUCTURES, 2019, 229
  • [19] Effect of Distinct Steel Fiber Types and Contents on the Flexural Properties of Ultra-High Performance Concrete
    Lai Y.-C.
    Lee M.-H.
    Tai Y.-S.
    Journal of the Chinese Institute of Civil and Hydraulic Engineering, 2022, 34 (05): : 387 - 396
  • [20] Bending and shear behavior of ultra-high performance fiber reinforced concrete
    Magureanu, C.
    Sosa, I.
    Negrutiu, C.
    Heghes, B.
    HIGH PERFORMANCE STRUCTURES AND MATERIALS V, 2010, 112 : 79 - 89