An inertial forward-backward splitting method for solving combination of equilibrium problems and inclusion problems

被引:10
作者
Khan, Suhel Ahmad [1 ]
Cholamjiak, Watcharaporn [2 ]
Kazmi, K. R. [3 ]
机构
[1] BITS Pilani, Dept Math, Dubai Campus,POB 345055, Dubai, U Arab Emirates
[2] Univ Phayao, Sch Sci, Phayao 56000, Thailand
[3] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
关键词
Equilibrium problem; Inertial method; Inclusion problems; Nonexpansive mapping; alpha-inverse strongly monotone mapping; Fixed point problem; MAXIMAL MONOTONE-OPERATORS; WEAK-CONVERGENCE; PROXIMAL METHOD; ALGORITHM; SUM;
D O I
10.1007/s40314-018-0684-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove a weak convergence theorem for finding a common solution of combination of equilibrium problems, infinite family of nonexpansive mappings, and the modified inclusion problems using inertial forward-backward algorithm. Further, we discuss some applications of our obtained results. Furthermore, we provide some numerical results to illustrate the convergence behavior of some of our results, and compare the convergence rate between the existing projection method and the proposed inertial forward-backward algorithm.
引用
收藏
页码:6283 / 6307
页数:25
相关论文
共 32 条
  • [1] Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space
    Alvarez, F
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2004, 14 (03) : 773 - 782
  • [2] An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping
    Alvarez, F
    Attouch, H
    [J]. SET-VALUED ANALYSIS, 2001, 9 (1-2): : 3 - 11
  • [3] [Anonymous], 1990, Topics in metric fixed point theory
  • [4] Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
  • [5] Blum E., 1994, Math. student, V63, P123
  • [6] Cholamjiak P., 1994, NUMER ALGORITHMS, V8, P221, DOI DOI 10.1007/BF02142692
  • [7] Combettes PL, 2005, J NONLINEAR CONVEX A, V6, P117
  • [8] Signal recovery by proximal forward-backward splitting
    Combettes, PL
    Wajs, VR
    [J]. MULTISCALE MODELING & SIMULATION, 2005, 4 (04) : 1168 - 1200
  • [9] INERTIAL ACCELERATED ALGORITHMS FOR SOLVING A SPLIT FEASIBILITY PROBLEM
    Dang, Yazheng
    Sun, Jie
    Xu, Honglei
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2017, 13 (03) : 1383 - 1394
  • [10] Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings
    Dong, Q. L.
    Yuan, H. B.
    Cho, Y. J.
    Rassias, Th. M.
    [J]. OPTIMIZATION LETTERS, 2018, 12 (01) : 87 - 102