Bounds on the spectral sparsification of symmetric and off-diagonal nonnegative real matrices

被引:0
作者
Mercado, Sergio [1 ]
Villagra, Marcos [2 ]
机构
[1] Univ Nacl Asuncion, Fac Politecn, Campus Univ, San Lorenzo 111421, Paraguay
[2] Univ Nacl Asuncion, Dept Matemat, Campus Univ, San Lorenzo 111421, Paraguay
关键词
Spectral sparsification; symmetric matrices; nonnegative matrices; spectral graph theory;
D O I
10.1142/S1793830921501093
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We say that a square real matrix M is off-diagonal nonnegative if and only if all entries outside its diagonal are nonnegative real numbers. In this paper, we show that for any off-diagonal nonnegative symmetric matrix M, there exists a nonnegative symmetric matrix (M) over cap which is sparse and close in spectrum to M.
引用
收藏
页数:9
相关论文
共 10 条
  • [1] Bhatia M., 1997, Matrix Analysis
  • [2] ROTATION OF EIGENVECTORS BY A PERTURBATION .3.
    DAVIS, C
    KAHAN, WM
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1970, 7 (01) : 1 - &
  • [3] Jolliffe I.T., 2002, PRINCIPAL COMPONENT, V2 2, DOI DOI 10.1007/978-1-4757-1904-8_1
  • [4] AN ITERATION METHOD FOR THE SOLUTION OF THE EIGENVALUE PROBLEM OF LINEAR DIFFERENTIAL AND INTEGRAL OPERATORS
    LANCZOS, C
    [J]. JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1950, 45 (04): : 255 - 282
  • [5] CONSTRUCTING LINEAR-SIZED SPECTRAL SPARSIFICATION IN ALMOST-LINEAR TIME
    Lee, Yin Tat
    Sun, He
    [J]. SIAM JOURNAL ON COMPUTING, 2018, 47 (06) : 2315 - 2336
  • [6] Pardalos P. M., 1991, J. Global Optim., V1, P15, DOI DOI 10.1007/BF00120662
  • [7] SPECTRAL SPARSIFICATION OF GRAPHS
    Spielman, Daniel A.
    Teng, Shang-Hua
    [J]. SIAM JOURNAL ON COMPUTING, 2011, 40 (04) : 981 - 1025
  • [8] Stewart G. W., 1990, MATRIX PERTURBATION
  • [9] A useful variant of the Davis-Kahan theorem for statisticians
    Yu, Y.
    Wang, T.
    Samworth, R. J.
    [J]. BIOMETRIKA, 2015, 102 (02) : 315 - 323
  • [10] Zouzias A, 2012, LECT NOTES COMPUT SC, V7391, P846, DOI 10.1007/978-3-642-31594-7_71