CO2 Methanation: Nickel-Alumina Catalyst Prepared by Solid-State Combustion

被引:13
|
作者
Netskina, Olga [1 ]
Mucha, Svetlana [1 ]
Veselovskaya, Janna [1 ]
Bolotov, Vasily [1 ]
Komova, Oxana [1 ]
Ishchenko, Arkady [1 ]
Bulavchenko, Olga [1 ]
Prosvirin, Igor [1 ]
Pochtar, Alena [1 ]
Rogov, Vladimir [1 ]
机构
[1] RAS, SB, Boreskov Inst Catalysis, Pr Akad Lavrentieva 5, Novosibirsk 630090, Russia
关键词
CO2; methanation; nickel-alumina catalyst; solid-state combustion method; catalyst activation; CARBON-DIOXIDE; NI-AL2O3; CATALYSTS; SUPPORTED NICKEL; NATURAL-GAS; NI/AL2O3; NI CATALYSTS; METAL; CONVERSION; SURFACE; HYDROGENATION;
D O I
10.3390/ma14226789
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of solvent-free methods for the synthesis of catalysts is one of the main tasks of green chemistry. A nickel-alumina catalyst for CO2 methanation was synthesized by solid-state combustion method using hexakis-(imidazole) nickel (II) nitrate complex. Using X-ray Powder Diffraction (XRD), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Hydrogen temperature-programmed reduction (H-2-TPR), it was shown that the synthesized catalyst is characterized by the localization of easily reduced nickel oxide on alumina surface. This provided low-temperature activation of the catalyst in the reaction mixture containing 4 vol% CO2. In addition, the synthesized catalyst had higher activity in low-temperature CO2 methanation compared to industrial NIAP-07-01 catalyst, which contained almost three times more hard-to-reduce nickel-aluminum spinel. Thus, the proposed approaches to the synthesis and activation of the catalyst make it possible to simplify the catalyst preparation procedure and to abandon the use of solvents, which must be disposed of later on.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] The effect of synthesis parameters on ordered mesoporous nickel alumina catalyst for CO2 methanation
    Aljishi, Ali
    Veilleux, Gabriel
    Lalinde, Jose Augusto Hernandez
    Kopyscinski, Jan
    APPLIED CATALYSIS A-GENERAL, 2018, 549 : 263 - 272
  • [2] Neodymium promoted ceria and alumina supported nickel catalysts for CO2 methanation reaction
    Gac, Wojciech
    Zawadzki, Witold
    Kusmierz, Marcin
    Slowik, Grzegorz
    Grudzinski, Wojciech
    APPLIED SURFACE SCIENCE, 2023, 631
  • [3] Novel boehmite transformation into γ-alumina and preparation of efficient nickel base alumina porous extrudates for plasma-assisted CO2 methanation
    Azzolina-Jury, Federico
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2019, 71 : 410 - 424
  • [4] Ni/bentonite catalysts prepared by solution combustion method for CO2 methanation
    Jiang, Yuexiu
    Huang, Tongxia
    Dong, Lihui
    Qin, Zuzeng
    Ji, Hongbing
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2018, 26 (11) : 2361 - 2367
  • [5] Effect of the structure of Ni/TiO2 catalyst on CO2 methanation
    Zhou, Rui
    Rui, Ning
    Fan, Zhigang
    Liu, Chang-jun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (47) : 22017 - 22025
  • [6] High-loaded nickel-alumina catalyst for direct CO2 hydrogenation into synthetic natural gas (SNG)
    Abello, Sonia
    Berrueco, Cesar
    Montane, Daniel
    FUEL, 2013, 113 : 598 - 609
  • [7] Promotion of unsupported nickel catalyst using iron for CO2 methanation
    Pandey, Dharmendra
    Ray, Koustuv
    Bhardwaj, Rahul
    Bojja, Sreedhar
    Chary, K. V. R.
    Deo, Goutam
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (10) : 4987 - 5000
  • [8] The state of BEA zeolite supported nickel catalysts in CO2 methanation reaction
    Gac, Wojciech
    Zawadzki, Witold
    Slowik, Grzegorz
    Kusmierz, Marcin
    Dzwigaj, Stanislaw
    APPLIED SURFACE SCIENCE, 2021, 564
  • [9] The reaction kinetics of CO2 methanation on a bifunctional Ni/MgO catalyst
    Loder, A.
    Siebenhofer, M.
    Lux, S.
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2020, 85 : 196 - 207
  • [10] CO and CO2 methanation over Ni/Al@Al2O3 core-shell catalyst
    Le, Thien An
    Kim, Jieun
    Kang, Jong Kyu
    Park, Eun Duck
    CATALYSIS TODAY, 2020, 356 : 622 - 630