Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials

被引:421
作者
Xiao, Shuyuan [1 ]
Wang, Tao [1 ]
Liu, Tingting [2 ]
Yan, Xicheng [1 ]
Li, Zhong [3 ,4 ]
Xu, Chen [5 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan 430074, Hubei, Peoples R China
[3] Univ Alabama, Ctr Mat Informat Technol, Tuscaloosa, AL 35487 USA
[4] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA
[5] New Mexico State Univ, Dept Phys, Las Cruces, NM 88001 USA
基金
中国国家自然科学基金;
关键词
PLASMONICALLY INDUCED TRANSPARENCY; INDUCED REFLECTION; LIGHT; ABSORPTION; MODE; SLOW;
D O I
10.1016/j.carbon.2017.10.035
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metamaterial analogues of electromagnetically induced transparency (EIT) have been intensively studied and widely employed for slow light and enhanced nonlinear effects. In particular, the active modulation of the EIT analogue and well-controlled group delay in metamaterials have shown great prospects in optical communication networks. Here we integrate a monolayer graphene into metal-based terahertz (THz) metamaterials, and realize a complete modulation in the resonance strength of the EIT analogue via manipulating the Fermi level of graphene. The physical mechanism lies in the active tuning of the damping rate of the dark mode resonator through the recombination effect of the conductive graphene. This work presents a novel modulation strategy of the EIT analogue in the hybrid metamaterials, and paves the way towards designing very compact slow light devices to meet the future demand of ultrafast optical signal processing. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:271 / 278
页数:8
相关论文
共 90 条
[1]   Classical analog of electromagnetically induced transparency [J].
Alzar, CLG ;
Martinez, MAG ;
Nussenzveig, P .
AMERICAN JOURNAL OF PHYSICS, 2002, 70 (01) :37-41
[2]   Plasmon-Induced Transparency in the Visible Region via Self-Assembled Gold Nanorod Heterodimers [J].
Biswas, Sushmita ;
Duan, Jinsong ;
Nepal, Dhriti ;
Park, Kyoungweon ;
Pachter, Ruth ;
Vaia, Richard A. .
NANO LETTERS, 2013, 13 (12) :6287-6291
[3]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[4]  
Cao W, 2013, APPL PHYS LETT, V103, P917
[5]   Experimental demonstration of frequency-agile terahertz metamaterials [J].
Chen, Hou-Tong ;
O'Hara, John F. ;
Azad, Abul K. ;
Taylor, Antoinette J. ;
Averitt, Richard D. ;
Shrekenhamer, David B. ;
Padilla, Willie J. .
NATURE PHOTONICS, 2008, 2 (05) :295-298
[6]   Realization of Fanolike Resonance Due to Diffraction Coupling of Localized Surface Plasmon Resonances in Embedded Nanoantenna Arrays [J].
Chen, Jing ;
Xu, Rongqing ;
Mao, Peng ;
Zhang, Yuting ;
Liu, Yuanjian ;
Tang, Chaojun ;
Liu, Jianqiang ;
Chen, Tao .
PLASMONICS, 2015, 10 (02) :341-346
[7]   Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips [J].
Cheng, Hua ;
Chen, Shuqi ;
Yu, Ping ;
Duan, Xiaoyang ;
Xie, Boyang ;
Tian, Jianguo .
APPLIED PHYSICS LETTERS, 2013, 103 (20)
[8]   Ultrathin dual-mode filtering characteristics of terahertz metamaterials with electrically unconnected and connected U-shaped resonators array [J].
Cheng, Zhaoxiang ;
Chen, Lin ;
Zang, Xiaofei ;
Cai, Bin ;
Peng, Yan ;
Zhu, Yiming .
OPTICS COMMUNICATIONS, 2015, 342 :20-25
[9]   Electrical Switching of Infrared Light Using Graphene Integration with Plasmonic Fano Resonant Metasurfaces [J].
Dabidian, Nima ;
Kholmanov, Iskandar ;
Khanikaev, Alexander B. ;
Tatar, Kaya ;
Trendafilov, Simeon ;
Mousavi, S. Hossein ;
Magnuson, Carl ;
Ruoff, Rodney S. ;
Shvets, Gennady .
ACS PHOTONICS, 2015, 2 (02) :216-227
[10]   Frequency tunable near-infrared metamaterials based on VO2 phase transition [J].
Dicken, Matthew J. ;
Aydin, Koray ;
Pryce, Imogen M. ;
Sweatlock, Luke A. ;
Boyd, Elizabeth M. ;
Walavalkar, Sameer ;
Ma, James ;
Atwater, Harry A. .
OPTICS EXPRESS, 2009, 17 (20) :18330-18339