Process-directed self-assembly of block copolymers: a computer simulation study

被引:9
作者
Mueller, Marcus [1 ]
Sun, De-Wen [1 ]
机构
[1] Univ Gottingen, Inst Theoret Phys, D-37077 Gottingen, Germany
关键词
polymers; self-assembly; computer simulation; string method; minimum free energy path; morphology; phase behavior; FREE-ENERGY; DYNAMICS; POLYMER; BLENDS;
D O I
10.1088/0953-8984/27/19/194101
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The free-energy landscape of self-assembling block copolymer systems is characterized by a multitude of metastable minima and concomitant protracted relaxation times of the morphology. Tailoring rapid changes (quench) of thermodynamic conditions, one can reproducibly trap the ensuing kinetics of self-assembly in a specific metastable state. To this end, it is necessary to (1) control the generation of well-defined, highly unstable states and (2) design the unstable state such that the ensuing spontaneous kinetics of structure formation reaches the desired metastable morphology. This process-directed self-assembly provides an alternative to fine-tuning molecular architecture by synthesis or blending, for instance, in order to fabricate complex network structures. Comparing our simulation results to recently developed free-energy techniques, we highlight the importance of non-equilibrium molecular conformations in the starting state and motivate the significance of the local conservation of density.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] "Bridge" Makes Differences to the Self-assembly of Block Copolymers
    Li, Weihua
    ACTA CHIMICA SINICA, 2021, 79 (02) : 133 - 138
  • [22] Mesoscale networks and corresponding transitions from self-assembly of block copolymers
    Chang, Cheng-Yen
    Manesi, Gkreti-Maria
    Yang, Chih-Ying
    Hung, Yu-Chueh
    Yang, Kai-Chieh
    Chiu, Po-Ting
    Avgeropoulos, Apostolos
    Ho, Rong-Ming
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (11)
  • [23] Development of Realistic Potentials for the Simulation of Directed Self-Assembly of PS-PMMA Di-Block Copolymers
    Lawson, Richard A.
    Ludovice, Peter J.
    Henderson, Clifford L.
    ALTERNATIVE LITHOGRAPHIC TECHNOLOGIES III, 2011, 7970
  • [24] Computer Simulation Study on the Molecular Design and the Self-Assembly Process of Au-Nanoparticle and Polymer Composite System
    Li Yanchun
    Li Yang
    PROGRESS IN CHEMISTRY, 2015, 27 (07) : 848 - 852
  • [25] Self-Registered Self-Assembly of Block Copolymers
    Wan, Lei
    Ruiz, Ricardo
    Gao, He
    Albrecht, Thomas R.
    ACS NANO, 2017, 11 (08) : 7666 - 7673
  • [26] Self-Assembly of Block Copolymers in Ionic Liquids
    Xie, Ru
    Lopez-Barron, Carlos R.
    Wagner, Norman J.
    IONIC LIQUIDS: CURRENT STATE AND FUTURE DIRECTIONS, 2017, 1250 : 83 - 142
  • [27] Programmable Reconfiguration of Supramolecular Bottlebrush Block Copolymers: From Solution Self-Assembly to Co-Crystallization-Assistant Self-Assembly
    Zhang, Kaixing
    Wu, Yanggui
    Chen, Senbin
    Zhu, Jintao
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (44)
  • [28] Nanofabrication of hybrid nanomaterials: Macroscopically aligned nanoparticles pattern via directed self-assembly of block copolymers
    Mendoza, Cesar
    Nirwan, Viraj Pratap
    Fahmi, Amir
    JOURNAL OF APPLIED POLYMER SCIENCE, 2023, 140 (05)
  • [29] Self-assembly of chiral block and gradient copolymers
    Bloksma, Meta M.
    Hoeppener, Stephanie
    D'Haese, Cecile
    Kempe, Kristian
    Mansfeld, Ulrich
    Paulus, Renzo M.
    Gohy, Jean-Francois
    Schubert, Ulrich S.
    Hoogenboom, Richard
    SOFT MATTER, 2012, 8 (01) : 165 - 172
  • [30] Self-assembly of block copolymers for biological applications
    Li, Zili
    Lin, Zhiqun
    POLYMER INTERNATIONAL, 2022, 71 (04) : 366 - 370