Graphite foam as interpenetrating matrices for phase change paraffin wax: A candidate composite for low temperature thermal energy storage

被引:87
作者
Karthik, Mani [1 ,2 ]
Faik, Abdessamad [1 ]
D'Aguanno, Bruno [1 ,3 ]
机构
[1] CIC Energigune, Parque Tecnol,C Albert Einstein 48, Minano 01510, Alava, Spain
[2] Int Adv Res Ctr Powder Met & New Mat ARCI, Ctr Nanomat, Hyderabad 500005, Andhra Pradesh, India
[3] Koine Multimedia, Via Alfredo Catalani 33, I-56125 Pisa, PI, Italy
关键词
Phase change materials; Graphite foam; Thermal transport; Matrix; Latent heat; Thermal energy storage; CARBON FOAMS; CONDUCTIVITY ENHANCEMENT; PORE STRUCTURE; PITCH; PERFORMANCE; FABRICATION; ERYTHRITOL; PRECURSOR; NICKEL; TUBE;
D O I
10.1016/j.solmat.2017.08.004
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Paraffin wax-graphite foam (P-wax/G-foam) composite was fabricated by using low cost small scale process aiming to produce a stable phase change material with enhanced thermal transport. Its thermophysical properties such as thermal diffusivity, specific heat and thermal conductivity were examined as a function of temperature. The thermal conductivity of the P-wax/G-foam composite in both solid (2.6 W/m K) and liquid (1.8 W/ m K) phases is by a factor of approximate to 11 (980%) higher than that of pristine paraffin wax in solid (0.24 W/m K) and by a factor of A approximate to 16 (1530%) in liquid (0.11 W/m K) phases, respectively. This is due to both the G-foam morphology and graphitic content, allowing a rapid heat transfer to the P-wax. The thermal conductivity behaviour of the composite is also discussed in term of a theoretical model in which the G-foam is described by a 3D interpenetrating matrix for the P-wax. The model shows the self-consistency of all the measured data. The obtained results demonstrated that the stable P-wax/G-foam composite is a promising material for various thermal energy storage applications such as building and vehicle heating and cooling, solar thermal harvesting, and thermal management of electrochemical energy storage and electronic devices.
引用
收藏
页码:324 / 334
页数:11
相关论文
共 50 条
  • [21] Paraffin/modified exfoliated graphite composite phase change materials with high performance and stability for thermal energy storage
    Menghuan Yu
    Guihua Fang
    Keke Meng
    Pengbo Sun
    Maosen Zhao
    Journal of Thermal Analysis and Calorimetry, 2023, 148 : 675 - 687
  • [22] Evaluation of Methods to Fully Saturate Carbon Foam with Paraffin Wax Phase Change Material for Energy Storage
    Warzoha, Ronald
    Sanusi, Omar
    McManus, Brian
    Fleischer, Amy S.
    2012 13TH IEEE INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS (ITHERM), 2012, : 834 - 839
  • [23] Thermal energy storage for low and medium temperature applications using phase change materials - A review
    da Cunha, Jose Pereira
    Eames, Philip
    APPLIED ENERGY, 2016, 177 : 227 - 238
  • [24] Expanded graphite as thermal conductivity enhancer for paraffin wax being used in thermal energy storage systems
    Raza, Gulfam
    Shi, Yongming
    Deng, Yuan
    2016 13TH INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGY (IBCAST), 2016, : 1 - 12
  • [25] Lauric acid/bentonite/flake graphite composite as form-stable phase change materials for thermal energy storage
    Liu, Songyang
    Han, Jie
    Gao, Qingjie
    Kang, Wenze
    Ren, Ruichen
    Wang, Lunan
    Chen, Dan
    Wu, Dapeng
    MATERIALS EXPRESS, 2020, 10 (02) : 214 - 224
  • [26] Improving the Cold Thermal Energy Storage Performance of Paraffin Phase Change Material by Compositing with Graphite, Expanded Graphite, and Graphene
    Shaker, Majid
    Qin, Qin
    Zhaxi, DaWa
    Chen, Xianyong
    Chen, Kefan
    Yang, Shuai
    Tian, Hao
    Cao, Weiqi
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2023, 32 (22) : 10275 - 10284
  • [27] Kaolinite stabilized paraffin composite phase change materials for thermal energy storage
    Li, Chuanchang
    Fu, Liangjie
    Ouyang, Jing
    Tang, Aidong
    Yang, Huaming
    APPLIED CLAY SCIENCE, 2015, 115 : 212 - 220
  • [28] Paraffin wax-based phase change microencapsulation embedded with silicon nitride nanoparticles for thermal energy storage
    Sun, Na
    Xiao, Zhenggang
    JOURNAL OF MATERIALS SCIENCE, 2016, 51 (18) : 8550 - 8561
  • [29] Ultrathin graphite sheets stabilized stearic acid as a composite phase change material for thermal energy storage
    Li, Chuanchang
    Xie, Baoshan
    Chen, Deliang
    Chen, Jian
    Li, Wei
    Chen, Zhongsheng
    Gibb, Stuart W.
    Long, Yi
    ENERGY, 2019, 166 (246-255) : 246 - 255
  • [30] Improvement of thermal conductivity of paraffin wax, a phase change material with graphite powder
    Usman, Muhammad
    Siddiqui, Faizan
    Ehsan, Adil
    Sadaqat, Rana Ammad
    Hussain, Azhar
    PROCEEDINGS OF 2020 17TH INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGY (IBCAST), 2020, : 16 - 25