Polymer coating with gradient-dispersed dielectric nanoparticles for enhanced daytime radiative cooling

被引:36
作者
Fu, Yang [1 ]
An, Yidan [1 ]
Xu, Yunkun [1 ]
Dai, Jian-Guo [2 ]
Lei, Dangyuan [1 ]
机构
[1] City Univ Hong Kong, Dept Mat Sci & Engn, Kowloon, 83 Tat Chee Ave, Hong Kong 999077, Peoples R China
[2] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hong Kong, Peoples R China
关键词
dielectric nanoparticles; gradient structures; Mie scattering; Monte-Carlo simulation; polymeric coating; radiative cooling; COLLOIDAL PARTICLES; SEDIMENTATION; COMPOSITES; DESIGN; COOLER; PAINTS; FILMS;
D O I
10.1002/eom2.12169
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymeric coatings with randomly distributed dielectric nanoparticles have attracted intensive attention in the passive daytime radiative cooling application. Here, we propose a modified Monte-Carlo method for investigating the spectral response and cooling performance of polymer coating with gradient-dispersed nanoparticles. Using this method, we carry out a quantitative analysis on the solar reflectance, infrared emittance and cooling power of four categories of gradient structures. It is shown that the gradient profile of particle distribution at the near-surface region has a significant influence on the overall performance of the coatings. Compared to a randomly distributed structure, the downward size-gradient structure exhibits superiority in both solar reflectance and cooling power. The presented gradient design, also applicable to porous structures, provides an effective and universal strategy for significantly improving the cooling performance of radiative cooling coatings.
引用
收藏
页数:8
相关论文
共 42 条
[1]  
Bohren C. F., 2008, ABSORPTION SCATTERIN
[2]  
Center B.P., 2020, Annual energy outlook 2020
[3]   Gradient multilayer structural design of CNTs/SiO2 composites for improving microwave absorbing properties [J].
Chen, Mingxia ;
Zhu, Yong ;
Pan, Yubai ;
Kou, Huamin ;
Xu, Heng ;
Guo, Jingkun .
MATERIALS & DESIGN, 2011, 32 (05) :3013-3016
[4]   WORLDWIDE TRENDS IN FUNCTIONAL GRADIENT MATERIALS RESEARCH-AND-DEVELOPMENT [J].
CHERRADI, N ;
KAWASAKI, A ;
GASIK, M .
COMPOSITES ENGINEERING, 1994, 4 (08) :883-894
[5]   Daytime passive radiative cooler using porous alumina [J].
Fu, Y. ;
Yang, J. ;
Su, Y. S. ;
Du, W. ;
Ma, Y. G. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2019, 191 :50-54
[6]   RADIATIVE COOLING TO LOW-TEMPERATURES - GENERAL-CONSIDERATIONS AND APPLICATION TO SELECTIVELY EMITTING SIO FILMS [J].
GRANQVIST, CG ;
HJORTSBERG, A .
JOURNAL OF APPLIED PHYSICS, 1981, 52 (06) :4205-4220
[7]   Nanoparticle embedded double-layer coating for daytime radiative cooling [J].
Huang, Zhifeng ;
Ruan, Xiulin .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 104 :890-896
[8]   Daytime passive radiative cooling by ultra emissive bio-inspired polymeric surface [J].
Jeong, S. Y. ;
Tso, C. Y. ;
Wong, Y. M. ;
Chao, C. Y. H. ;
Huang, B. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 206
[9]   RETRACTED: Structure and mechanism of the essential two-component signal-transduction system WalKR in Staphylococcus aureus (Retracted article. See vol. 8, art no 1431, 2017) [J].
Ji, Quanjiang ;
Chen, Peter J. ;
Qin, Guangrong ;
Deng, Xin ;
Hao, Ziyang ;
Wawrzak, Zdzislaw ;
Yeo, Won-Sik ;
Quang, Jenny Winjing ;
Cho, Hoonsik ;
Luo, Guan-Zheng ;
Weng, Xiaocheng ;
You, Qiancheng ;
Luan, Chi-Hao ;
Yang, Xiaojing ;
Bae, Taeok ;
Yu, Kunqian ;
Jiang, Hualiang ;
He, Chuan .
NATURE COMMUNICATIONS, 2016, 7
[10]   Outdoor-Useable, Wireless/Battery-Free Patch-Type Tissue Oximeter with Radiative Cooling [J].
Kang, Min Hyung ;
Lee, Gil Ju ;
Lee, Joong Hoon ;
Kim, Min Seok ;
Yan, Zheng ;
Jeong, Jae-Woong ;
Jang, Kyung-In ;
Song, Young Min .
ADVANCED SCIENCE, 2021, 8 (10)