Ring of map -based neural oscillators: From order to chaos and back

被引:13
作者
Bashkirtseva, Irina A. [1 ]
Ryashko, Lev B. [1 ]
Pisarchik, Alexander N. [2 ,3 ]
机构
[1] Ural Fed Univ, Inst Math & Comp Sci, Ekaterinburg 620000, Russia
[2] Tech Univ Madrid, Ctr Biomed Technol, Madrid 28223, Spain
[3] Innopolis Univ, Ctr Technol Robot & Mechatron Component, Innopolis 450200, Russia
基金
俄罗斯科学基金会;
关键词
LYAPUNOV EXPONENTS; SYNCHRONIZATION; DYNAMICS; NOISE; NEURONS; MODEL; STABILITY; NETWORKS; DISEASE; MEMORY;
D O I
10.1016/j.chaos.2020.109830
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study transitions from regular to chaotic dynamics and back of a ring of three map-based neurons with parameter mismatch. First, we consider the case when each neuron being isolated is in a stable equilibrium and show that an increase in the coupling strength can lead to chaotic dynamics following a quasiperiodic behavior. Then, we consider the case when the uncoupled neurons are in a chaotic state and demonstrate the route from chaos to periodicity as the coupling strength is increased. We show that this interesting effect results from lag synchronization of the coupled neural oscillators. The system stability is characterized by the largest Lyapunov exponents in the space of the coupling strength and parameter mismatch, while lag synchronization is measured using the similarity function. © 2020
引用
收藏
页数:9
相关论文
共 63 条
  • [1] Dynamics of map-based neuronal network with modified spike-timing-dependent plasticity
    Andreev, A. V.
    Pitsik, E. N.
    Makarov, V. V.
    Pisarchik, A. N.
    Hramov, A. E.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2018, 227 (10-11) : 1029 - 1038
  • [2] Coherence resonance in stimulated neuronal network
    Andreev, Andrey V.
    Makarov, Vladimir V.
    Runnova, Anastasija E.
    Pisarchik, Alexander N.
    Hramov, Alexander E.
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 106 : 80 - 85
  • [3] Anishchenko V., 1988, NONLINEAR DYNAMICS C, DOI 10.1007/978-3-540-38168-6
  • [4] Arbib M, 2007, HDB BRAIN THEORY NEU
  • [5] Noise-induced spiking-bursting transition in the neuron model with the blue sky catastrophe
    Bashkirtseva, Irina
    Ryashko, Lev
    Slepukhina, Evdokia
    [J]. PHYSICAL REVIEW E, 2019, 99 (06)
  • [6] Noise-induced bursting and chaos in the two-dimensional Rulkov model
    Bashkirtseva, Irina
    Nasyrova, Venera
    Ryashko, Lev
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 110 : 76 - 81
  • [7] Analysis of noise effects in a map-based neuron model with Canard-type quasiperiodic oscillations
    Bashkirtseva, Irina
    Nasyrova, Venera
    Ryashko, Lev
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 63 : 261 - 270
  • [8] Boccaletti S., 2018, Synchronization: from coupled systems to complex networks
  • [9] Chaos suppression through asymmetric coupling
    Bragard, J.
    Vidal, G.
    Mancini, H.
    Mendoza, C.
    Boccaletti, S.
    [J]. CHAOS, 2007, 17 (04)
  • [10] Investigation of Details in the Transition to Synchronization in Complex Networks by Using Recurrence Analysis
    Budzinski, Roberto C.
    Reichert Boaretto, Bruno Rafael
    Prado, Thiago L.
    Lopes, Sergio Roberto
    [J]. MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2019, 24 (02)