On the limitations of Volumetric Energy Density as a design parameter for Selective Laser Melting

被引:581
作者
Bertoli, Umberto Scipioni [1 ]
Wolfer, Alexander J. [2 ]
Matthews, Manyalibo J. [3 ]
Delplanque, Jean-Pierre R. [2 ]
Schoenung, Julie M. [1 ]
机构
[1] Univ Calif Irvine, Dept Chem Engn & Mat Sci, Irvine, CA 92697 USA
[2] Univ Calif Davis, Dept Mech & Aerosp Engn, Davis, CA 95616 USA
[3] Lawrence Livermore Natl Lab, Div Mat Sci, 7000 East Ave, Livermore, CA 94550 USA
关键词
316L stainless steel; Powder-bed fusion; Selective Laser Melting; Energy density; Keyhole-mode laser melting; POWDER-BED FUSION; STAINLESS-STEEL PARTS; MECHANICAL-PROPERTIES; SINGLE-TRACK; DENUDATION; QUALITY;
D O I
10.1016/j.matdes.2016.10.037
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Energy density is often used as a metric to compare components manufactured with Selective Laser Melting (SLM) under different sets of deposition parameters (e.g., laser power, scan speed, layer thickness, etc.). We present a brief review of the current literature on additive manufacturing of 316L stainless steel (SS) related to input parameter scaling relations. From previously published work we identified a range of Volumetric Energy Density (VED) values that should lead to deposition of fully dense parts. In order to corroborate these data, we designed a series of experiments to investigate the reliability of VED as a design parameter by comparing single tracks of 316L SS deposited with variable deposition parameters. Our results show the suitability of VED as a design parameter to describe SLM to be limited to a narrow band of applicability, which is attributed to the inability of this parameter to capture the complex physics of the melt pool. Caution should be exercised when using VED as a design parameter for SLM. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:331 / 340
页数:10
相关论文
共 31 条
[1]  
Aboulkhair Nesma T., 2014, Addit. Manuf., V1-4, P77, DOI DOI 10.1016/J.ADDMA.2014.08.001
[2]   Selective laser melting of aluminum die-cast alloy-Correlations between process parameters, solidification conditions, and resulting mechanical properties [J].
Buchbinder, D. ;
Meiners, W. ;
Wissenbach, K. ;
Poprawe, R. .
JOURNAL OF LASER APPLICATIONS, 2015, 27
[3]   Analysis of the molten/solidified zone in selective laser melted parts [J].
Campanelli, Sabina L. ;
Casalino, Giuseppe ;
Contuzzi, Nicola ;
Angelastro, Andrea ;
Ludovico, Antonio D. .
HIGH-POWER LASER MATERIALS PROCESSING: LASERS, BEAM DELIVERY, DIAGNOSTICS, AND APPLICATIONS III, 2014, 8963
[4]   Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting [J].
Cherry, J. A. ;
Davies, H. M. ;
Mehmood, S. ;
Lavery, N. P. ;
Brown, S. G. R. ;
Sienz, J. .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2015, 76 (5-8) :869-879
[5]   Energy density analysis on single tracks formed by selective laser melting with CoCrMo powder material [J].
Ciurana, Joaquim ;
Hernandez, Luis ;
Delgado, Jordi .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2013, 68 (5-8) :1103-1110
[6]  
EAGAR TW, 1983, WELD J, V62, pS346
[7]   Keyhole modeling during laser welding [J].
Fabbro, R ;
Chouf, K .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (09) :4075-4083
[8]   Influence of defects on mechanical properties of Ti-6Al-4 V components produced by selective laser melting and electron beam melting [J].
Gong, Haijun ;
Rafi, Khalid ;
Gu, Hengfeng ;
Ram, G. D. Janaki ;
Starr, Thomas ;
Stucker, Brent .
MATERIALS & DESIGN, 2015, 86 :545-554
[9]  
Gong J, 2014, 2014 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS (ICCS), P87, DOI 10.1109/ICCS.2014.7024771
[10]   Heat transfer modelling and stability analysis of selective laser melting [J].
Gusarov, A. V. ;
Yadroitsev, I. ;
Bertrand, Ph. ;
Smurov, I. .
APPLIED SURFACE SCIENCE, 2007, 254 (04) :975-979