Determining a first order perturbation of the biharmonic operator by partial boundary measurements

被引:50
作者
Krupchyk, Katsiaryna [2 ]
Lassas, Matti [2 ]
Uhlmann, Gunther [1 ,3 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
[2] Univ Helsinki, Dept Math & Stat, FI-00014 Helsinki, Finland
[3] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
基金
芬兰科学院; 美国国家科学基金会;
关键词
Inverse problem; Biharmonic; Partial data; INVERSE CONDUCTIVITY PROBLEM; PARTIAL CAUCHY DATA; GLOBAL UNIQUENESS; CALDERON PROBLEM; SCHRODINGER-EQUATION; MAGNETIC-FIELD; NEUMANN MAP; LOCAL DATA; RECONSTRUCTION; INVISIBILITY;
D O I
10.1016/j.jfa.2011.11.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an operator Delta(2) + A(x) . D+q(x) with the Navier boundary conditions on a bounded domain in R-n, n >= 3. We show that a first order perturbation A(x) . D+q can be determined uniquely by measuring the Dirichlet-to-Neumann map on possibly very small subsets of the boundary of the domain. Notice that the corresponding result does not hold in general for a first order perturbation of the Laplacian. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1781 / 1801
页数:21
相关论文
共 39 条
[1]   Calderon's inverse problem for anisotropic conductivity in the plane [J].
Astala, K ;
Päivärinta, L ;
Lassas, M .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (1-3) :207-224
[2]   Calderon's inverse conductivity problem in the plane [J].
Astala, Kari ;
Paivarinta, Lassi .
ANNALS OF MATHEMATICS, 2006, 163 (01) :265-299
[3]   Recovering a potential from Cauchy data in the two-dimensional case [J].
Bukhgeim, A. L. .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2008, 16 (01) :19-33
[4]   Recovering a potential from partial Cauchy data [J].
Bukhgeim, AL ;
Uhlmann, G .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (3-4) :653-668
[5]  
Calderón AP, 2006, COMPUT APPL MATH, V25, P133
[6]   Inverse Boundary Value Problem for Maxwell Equations with Local Data [J].
Caro, Pedro ;
Ola, Petri ;
Salo, Mikko .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (11) :1425-1464
[7]   Determining a magnetic Schroedinger operator from partial Cauchy data [J].
Dos Santos Ferreira, David ;
Kenig, Carlos E. ;
Sjostrand, Johannes ;
Uhlmann, Gunther .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 271 (02) :467-488
[8]   INVERSE SCATTERING PROBLEM FOR THE SCHRODINGER-EQUATION WITH MAGNETIC POTENTIAL AT A FIXED-ENERGY [J].
ESKIN, G ;
RALSTON, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 173 (01) :199-224
[9]   Models of Higher Order [J].
Gazzola, Filippo ;
Grunau, Hans-Christoph ;
Sweers, Guido .
POLYHARMONIC BOUNDARY VALUE PROBLEMS: POSITIVITY PRESERVING AND NONLINEAR HIGHER ORDER ELLIPTIC EQUATIONS IN BOUNDED DOMAINS, 2010, 1991 :1-+
[10]  
Greenleaf A, 2003, MATH RES LETT, V10, P685