Inequalities for Partial Moduli of Continuity and Partial Derivatives

被引:5
作者
Kolyada, V. I. [1 ]
Perez Lazaro, F. J. [2 ]
机构
[1] Karlstad Univ, Dept Math, S-65188 Karlstad, Sweden
[2] Univ La Rioja, Dept Matemat & Computac, Logrono 26004, Spain
关键词
Moduli of continuity; Gagliardo-Nirenberg type inequalities; Sobolev spaces; Besov norms; Embeddings; Rearrangements; SOBOLEV SPACES; THEOREMS;
D O I
10.1007/s00365-010-9088-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain pointwise and integral type estimates of higher-order partial moduli of continuity in C via partial derivatives. Also, a Gagliardo-Nirenberg type inequality for partial derivatives in a fixed direction is proved. Our methods enable us to study the case when different partial derivatives belong to different spaces, including the space L (1).
引用
收藏
页码:23 / 59
页数:37
相关论文
共 50 条
  • [1] Inequalities for Partial Moduli of Continuity and Partial Derivatives
    V. I. Kolyada
    F. J. Pérez Lázaro
    Constructive Approximation, 2011, 34 : 23 - 59
  • [2] Functional differential inequalities with partial derivatives
    Kamont, Z.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2014, 21 (01) : 127 - 146
  • [3] INEQUALITIES FOR INCREMENTS OF STOCHASTIC-PROCESSES AND MODULI OF CONTINUITY
    CSAKI, E
    CSORGO, M
    ANNALS OF PROBABILITY, 1992, 20 (02) : 1031 - 1052
  • [4] Lyapunov-type inequalities for partial differential equations
    de Napoli, Pablo L.
    Pinasco, Juan P.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (06) : 1995 - 2018
  • [5] Estimates for partial derivatives of vector-valued functions
    Hytonen, Tuomas P.
    ILLINOIS JOURNAL OF MATHEMATICS, 2007, 51 (03) : 731 - 742
  • [6] A unified approach to inequalities for K-functionals and moduli of smoothness
    Gogatishvili, Amiran
    Opic, Bohumir
    Tikhonov, Sergey
    Trebels, Walter
    MATHEMATISCHE ZEITSCHRIFT, 2024, 307 (02)
  • [7] Optimal Estimates with Moduli of Continuity
    Păltănea R.
    Results in Mathematics, 1997, 32 (3-4) : 318 - 331
  • [8] Sobolev Mappings and Moduli Inequalities on Carnot Groups
    Sevost’yanov E.A.
    Ukhlov A.
    Journal of Mathematical Sciences, 2020, 249 (5) : 754 - 768
  • [9] On variation functions and their moduli of continuity
    Breneis, Simon
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 491 (02)
  • [10] CAPACITY INEQUALITIES AND LIPSCHITZ CONTINUITY OF MAPPINGS
    Salimov, Ruslan
    Sevost'yanov, Evgeny
    Ukhlov, Alexander
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2024, 178 (01) : 129 - 135