Southern Ocean Heat Uptake, Redistribution, and Storage in a Warming Climate: The Role of Meridional Overturning Circulation

被引:86
作者
Liu, Wei [1 ,2 ,3 ]
Lu, Jian [4 ]
Xie, Shang-Ping [2 ]
Fedorov, Alexey [3 ]
机构
[1] Univ Calif Riverside, Dept Earth Sci, Riverside, CA 92521 USA
[2] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA
[3] Yale Univ, Dept Geol & Geophys, New Haven, CT 06520 USA
[4] Pacific Northwest Natl Lab, Richland, WA 99352 USA
基金
美国国家科学基金会;
关键词
SEA-ICE; ATMOSPHERE MODEL; TRANSIENT-RESPONSE; MESOSCALE EDDIES; WINDS; CO2; SENSITIVITY; MECHANISMS; DEPENDENCE; CARBON;
D O I
10.1175/JCLI-D-17-0761.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Climate models show that most of the anthropogenic heat resulting from increased atmospheric CO2 enters the Southern Ocean near 60 degrees S and is stored around 45 degrees S. This heat is transported to the ocean interior by the meridional overturning circulation (MOC) with wind changes playing an important role in the process. To isolate and quantify the latter effect, we apply an overriding technique to a climate model and decompose the total ocean response to CO2 increase into two major components: one due to wind changes and the other due to direct CO2 effect. We find that the poleward-intensified zonal surface winds tend to shift and strengthen the ocean Deacon cell and hence the residual MOC, leading to anomalous divergence of ocean meridional heat transport around 60 degrees S coupled to a surface heat flux increase. In contrast, at 45 degrees S we see anomalous convergence of ocean heat transport and heat loss at the surface. As a result, the wind-induced ocean heat storage (OHS) peaks at 46 degrees S at a rate of 0.07 ZJ yr(-1) (degrees lat)(-1) (1 ZJ = 10(21) J), contributing 20% to the total OHS maximum. The direct CO2 effect, on the other hand, very slightly alters the residual MOC but primarily warms the ocean. It induces a small but nonnegligible change in eddy heat transport and causes OHS to peak at 42 degrees S at a rate of 0.30 ZJ yr(-1) (degrees lat)(-1), accounting for 80% of the OHS maximum. We also find that the eddy-induced MOC weakens, primarily caused by a buoyancy flux change as a result of the direct CO2 effect, and does not compensate the intensified Deacon cell.
引用
收藏
页码:4727 / 4743
页数:17
相关论文
共 80 条
[31]   Comparison of results from several AOGCMs for global and regional sea-level change 1900-2100 [J].
Gregory, JM ;
Church, JA ;
Boer, GJ ;
Dixon, KW ;
Flato, GM ;
Jackett, DR ;
Lowe, JA ;
O'Farrell, SP ;
Roeckner, E ;
Russell, GL ;
Stouffer, RJ ;
Winton, M .
CLIMATE DYNAMICS, 2001, 18 (3-4) :225-240
[32]   Impacts on Ocean Heat from Transient Mesoscale Eddies in a Hierarchy of Climate Models [J].
Griffies, Stephen M. ;
Winton, Michael ;
Anderson, Whit G. ;
Benson, Rusty ;
Delworth, Thomas L. ;
Dufour, Carolina O. ;
Dunne, John P. ;
Goddard, Paul ;
Morrison, Adele K. ;
Rosati, Anthony ;
Wittenberg, Andrew T. ;
Yin, Jianjun ;
Zhang, Rong .
JOURNAL OF CLIMATE, 2015, 28 (03) :952-977
[33]   The role of eddies in determining the structure and response of the wind-driven southern hemisphere overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) project [J].
Hallberg, Robert ;
Gnanadesikan, Anand .
JOURNAL OF PHYSICAL OCEANOGRAPHY, 2006, 36 (12) :2232-2252
[34]   The budgets of heat and salinity in NEMO [J].
Hieronymus, M. ;
Nycander, J. .
OCEAN MODELLING, 2013, 67 :28-38
[35]   Eddy heat flux in the Southern Ocean: Response to variable wind forcing [J].
Hogg, Andrew McC. ;
Meredith, Michael P. ;
Blundell, Jeffrey R. ;
Wilson, Chris .
JOURNAL OF CLIMATE, 2008, 21 (04) :608-620
[36]   Improved Sea Ice Shortwave Radiation Physics in CCSM4: The Impact of Melt Ponds and Aerosols on Arctic Sea Ice [J].
Holland, Marika M. ;
Bailey, David A. ;
Briegleb, Bruce P. ;
Light, Bonnie ;
Hunke, Elizabeth .
JOURNAL OF CLIMATE, 2012, 25 (05) :1413-1430
[37]   The deep-ocean heat uptake in transient climate change [J].
Huang, BY ;
Stone, PH ;
Sokolov, AP ;
Kamenkovich, IV .
JOURNAL OF CLIMATE, 2003, 16 (09) :1352-1363
[38]   The Community Earth System Model A Framework for Collaborative Research [J].
Hurrell, James W. ;
Holland, M. M. ;
Gent, P. R. ;
Ghan, S. ;
Kay, Jennifer E. ;
Kushner, P. J. ;
Lamarque, J. -F. ;
Large, W. G. ;
Lawrence, D. ;
Lindsay, K. ;
Lipscomb, W. H. ;
Long, M. C. ;
Mahowald, N. ;
Marsh, D. R. ;
Neale, R. B. ;
Rasch, P. ;
Vavrus, S. ;
Vertenstein, M. ;
Bader, D. ;
Collins, W. D. ;
Hack, J. J. ;
Kiehl, J. ;
Marshall, S. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2013, 94 (09) :1339-1360
[39]   Connecting tropical climate change with Southern Ocean heat uptake [J].
Hwang, Yen-Ting ;
Xie, Shang-Ping ;
Deser, Clara ;
Kang, Sarah M. .
GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (18) :9449-9457
[40]   Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models [J].
Kostov, Yavor ;
Marshall, John ;
Hausmann, Ute ;
Armour, Kyle C. ;
Ferreira, David ;
Holland, Marika M. .
CLIMATE DYNAMICS, 2017, 48 (5-6) :1595-1609