Arbitrary order 2D virtual elements for polygonal meshes: part I, elastic problem

被引:125
作者
Artioli, E. [1 ]
da Veiga, L. Beirao [2 ]
Lovadina, C. [3 ]
Sacco, E. [4 ]
机构
[1] Univ Roma Tor Vergata, Dept Civil Engn & Comp Sci, Via Politecn 1, I-00133 Rome, Italy
[2] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 53, I-20125 Milan, Italy
[3] Univ Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, Italy
[4] Univ Cassino & Lazio Meridionale, Dipartimento Ingn Civile & Meccan, Via G Di Biasio 43, I-03043 Cassino, Italy
关键词
Virtual element method; Elasticity; Static analysis; Polygonal meshes; FINITE-ELEMENTS; TOPOLOGY OPTIMIZATION; CONTACT;
D O I
10.1007/s00466-017-1404-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present work deals with the formulation of a virtual element method for two dimensional structural problems. The contribution is split in two parts: in part I, the elastic problem is discussed, while in part II (Artioli et al. in Comput Mech, 2017) the method is extended to material nonlinearity, considering different inelastic responses of the material. In particular, in part I a standardized procedure for the construction of all the terms required for the implementation of the method in a computer code is explained. The procedure is initially illustrated for the simplest case of quadrilateral virtual elements with linear approximation of displacement variables on the boundary of the element. Then, the case of polygonal elements with quadratic and, even, higher order interpolation is considered. The construction of the method is detailed, deriving the approximation of the consistent term, the required stabilization term and the loading term for all the considered virtual elements. A wide numerical investigation is performed to assess the performances of the developed virtual elements, considering different number of edges describing the elements and different order of approximations of the unknown field. Numerical results are also compared with the one recovered using the classical finite element method.
引用
收藏
页码:355 / 377
页数:23
相关论文
共 26 条
  • [1] Andersen O., 2016, ARXIV160609508
  • [2] A C1 VIRTUAL ELEMENT METHOD FOR THE CAHN-HILLIARD EQUATION WITH POLYGONAL MESHES
    Antonietti, P. F.
    Da Veiga, L. Beirao
    Scacchi, S.
    Verani, M.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (01) : 34 - 56
  • [3] Artioli E, 2017, P INT C COMP PLAST
  • [4] Artioli E, 2017, COMPUT MECH IN PRESS
  • [5] Bathe KJ., 1996, Finite element procedures
  • [6] Beirao da Veiga L., 2014, MATH MOD METH APPL S, V24, P1541, DOI DOI 10.1142/S021820251440003X
  • [7] Polygonal finite element methods for contact-impact problems on non-conformal meshes
    Biabanaki, S. O. R.
    Khoei, A. R.
    Wriggers, P.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 269 : 198 - 221
  • [8] Virtual Element Methods for plate bending problems
    Brezzi, Franco
    Marini, L. Donatella
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 253 : 455 - 462
  • [9] Hourglass stabilization and the virtual element method
    Cangiani, A.
    Manzini, G.
    Russo, A.
    Sukumar, N.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 102 (3-4) : 404 - 436
  • [10] Some basic formulations of the virtual element method (VEM) for finite deformations
    Chi, H.
    da Veiga, L. Beirao
    Paulino, G. H.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 318 : 148 - 192