Contraction of surfaces by harmonic mean curvature flows and nonuniqueness of their self similar solutions

被引:5
作者
Anada, K [1 ]
机构
[1] Waseda Univ, Dept Appl Phys, Tokyo 1698555, Japan
关键词
D O I
10.1007/PL00009908
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the evolution equations F-t = -(H-l)(alpha)nu, where 0 < <alpha> < 1, <nu> is the unit outer normal vector and H-1 is the harmonic mean curvature defined by H-1 = ((K-1(-1) + K-2(-1))/2)(-1) In this paper, we prove the nonuniqueness of their strictly convex self similar solutions for some 0 < <alpha> < 1. This result implies that there are non-spherical self similar solutions.
引用
收藏
页码:109 / 116
页数:8
相关论文
共 8 条
[1]   HARNACK INEQUALITIES FOR EVOLVING HYPERSURFACES [J].
ANDREWS, B .
MATHEMATISCHE ZEITSCHRIFT, 1994, 217 (02) :179-197
[3]  
ANDREWS B, 1998, MOTION HYPERSURFACES
[4]  
Andrews B., 1994, COMMUN ANAL GEOM, V2, P53
[5]  
GAGE M, 1986, J DIFFER GEOM, V23, P69
[6]  
Rabinowitz P., 1973, ROCKY MOUNTAIN J MAT, V3, P161, DOI [DOI 10.1216/RMJ-1973-3-2-161, 10.1216/RMJ-1973-3-2-161]
[7]   ON AFFINE PLANE CURVE EVOLUTION [J].
SAPIRO, G ;
TANNENBAUM, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 119 (01) :79-120