A Randomized Algorithm for the Capacity of Finite-State Channels

被引:18
作者
Han, Guangyue [1 ]
机构
[1] Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
关键词
Finite-state channel; memory channel; capacity; MUTUAL INFORMATION RATE; HIDDEN MARKOV-PROCESSES; ENTROPY RATE; SPECIAL FAMILIES; ANALYTICITY; BINARY; ASYMPTOTICS; COMPUTATION; CONCAVITY; RATES;
D O I
10.1109/TIT.2015.2432094
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Inspired by ideas from the field of stochastic approximation, we propose a randomized algorithm to compute the capacity of a finite-state channel with a Markovian input. When the mutual information rate of the channel is concave with respect to the chosen parameterization, the proposed algorithm proves to be convergent to the capacity of the channel almost surely with the derived convergence rate. We also discuss the convergence behavior of the algorithm without the concavity assumption.
引用
收藏
页码:3651 / 3669
页数:19
相关论文
共 64 条
[1]   OPTIMAL CODING STRATEGIES FOR CERTAIN PERMUTING CHANNELS [J].
AHLSWEDE, R ;
KASPI, AH .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1987, 33 (03) :310-314
[2]   Entropy of Hidden Markov Processes via Cycle Expansion [J].
Allahverdyan, Armen E. .
JOURNAL OF STATISTICAL PHYSICS, 2008, 133 (03) :535-564
[3]  
[Anonymous], 1997, Application of Mathematics
[4]  
[Anonymous], 2011, London Mathematical Society Lecture Note Series
[5]  
[Anonymous], LONDON MATH SOC LECT
[7]   Simulation-based computation of information rates for channels with memory [J].
Arnold, Dieter M. ;
Loeliger, Hans-Andrea ;
Vontobel, Pascal I. ;
Kavcic, Aleksandar ;
Zeng, Wei .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (08) :3498-3508
[8]   EVOLUTIONARY FORMALISM FOR PRODUCTS OF POSITIVE RANDOM MATRICES [J].
Arnold, Ludwig ;
Gundlach, Volker Matthias ;
Demetrius, Lloyd .
ANNALS OF APPLIED PROBABILITY, 1994, 4 (03) :859-901
[9]   OPTIMAL DECODING OF LINEAR CODES FOR MINIMIZING SYMBOL ERROR RATE [J].
BAHL, LR ;
COCKE, J ;
JELINEK, F ;
RAVIV, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1974, 20 (02) :284-287
[10]  
Benveniste Albert, 2012, Adaptive Algorithms and Stochastic Approximations, V22