On the Distribution of the Digits in Luroth Expansions

被引:0
作者
Zhou, Qing-Long [1 ]
机构
[1] Wuhan Univ Technol, Sch Sci, Wuhan 430070, Peoples R China
关键词
Luroth expansion; Hausdorff dimension; exceptional set; PARTIAL QUOTIENTS; DIMENSION; SETS;
D O I
10.1007/s10986-022-09553-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For x is an element of [0, 1), let [d(1)(x), d(2)(x), ...] be its Luroth expansion, and let {p(n)(x)/q(n)(x)}(n >= 1) be the sequence of convergents of x. In this paper, we prove that the Hausdorff dimension of the exceptional set F-alpha(beta) = {x is an element of [0, 1): lim inf(n ->infinity) log d(n+1)(x)/-log vertical bar x - p(n)(x)/q(n)(x)vertical bar = alpha, lim sup(n ->infinity) log d(n+1)(x)/-log vertical bar x - p(n)(x)/q(n)(x)vertical bar >= beta} is (1 - beta)/2 or 1 - beta according to alpha > 0 or alpha = 0. This extends an earlier result of Tan and Zhang.
引用
收藏
页码:123 / 132
页数:10
相关论文
共 17 条
  • [1] Frequency of digits in the Luroth expansion
    Barreira, Luis
    Iommi, Godofredo
    [J]. JOURNAL OF NUMBER THEORY, 2009, 129 (06) : 1479 - 1490
  • [2] Barrionuevo J, 1996, ACTA ARITH, V74, P311
  • [3] The efficiency of approximating real numbers by Luroth expansion
    Cao, Chunyun
    Wu, Jun
    Zhang, Zhenliang
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (02) : 497 - 513
  • [4] DAJANI K., 1996, J. Theor. Nombres Bordeaux, V8, P331
  • [5] Falconer K., 2014, FRACTAL GEOMETRY MAT
  • [6] Galambos J., 1976, Lecture Notes in Mathematics, V502
  • [7] FRACTALS AND SELF SIMILARITY
    HUTCHINSON, JE
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) : 713 - 747
  • [8] JAGER H, 1969, P K NED AKAD A MATH, V72, P31
  • [9] Big Birkhoff sums in d-decaying Gauss like iterated function systems
    Liao, Lingmin
    Rams, Michal
    [J]. STUDIA MATHEMATICA, 2022, 264 (01) : 1 - 25
  • [10] On the exceptional sets in Sylvester expansions
    Lu, Meiying
    [J]. LITHUANIAN MATHEMATICAL JOURNAL, 2018, 58 (01) : 48 - 53