Enhanced Electrochemical Performance of Li- and Mn-Rich Cathode Materials by Particle Blending and Surface Coating

被引:7
作者
Li, Zhao [1 ,2 ,3 ]
Li, Qiang [1 ,2 ,3 ]
Wu, Shuaijin [1 ,2 ]
Zhang, Anbang [1 ,2 ,3 ]
Zhuo, Haoxiang [1 ,2 ,3 ]
Zhang, Gangning [1 ,2 ,3 ]
Wang, Zhong [1 ,3 ]
Wang, Lin [1 ,2 ]
Ren, Zhimin [1 ,2 ]
Wang, Jiantao [1 ,2 ,3 ]
机构
[1] GRINM Grp Co Ltd, Natl Power Battery Innovat Ctr, Beijing 100088, Peoples R China
[2] China Automot Battery Res Inst Co Ltd, Beijing 100088, Peoples R China
[3] Gen Res Inst Nonferrous Met, Beijing 100088, Peoples R China
基金
北京市自然科学基金;
关键词
Lithium-ion battery; Cathode; Li- and Mn-rich materials; Particle blending; Surface coating; POSITIVE ELECTRODE MATERIALS; LAYERED OXIDES; ION BATTERIES; VOLTAGE FADE; CEO2; SIZE; NI; CO; LI1.2MN0.54NI0.13CO0.13O2; DIFFRACTION;
D O I
10.1002/slct.201904290
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A Li- and Mn-rich material Li1.18Mn0.55Ni0.18Co0.09O2 (LMR) exhibits a high specific capacity; however, this material has serious problems, including a poor rate capability and limited cycling life. A jet crushing method is used to break micron-sized LMR particles synthesized by a solid-state reaction into nano-sized particles. Compared to micron-sized particles, nano-sized LMR particles possess a higher rate capability due to shorter Li+ diffusion pathway, but also an increase in side reactions with the electrolyte leads to poorer cycling performance. Herein, we propose a material engineering strategy that combines micronand nano-sized particle blending and a cerium oxide (CeO2) surface coating modifications to enhance the electrochemical performance of LMR material. X-ray diffraction (XRD) patterns and transmission electron microscopy (TEM) images demonstrate that the cubic structure of CeO2 is uniformly distributed on the surface of LMR, which is supposed to suppress the electrode/electrolyte side reactions by preventing electrode particles from being directly exposed to the electrolyte. As a result, the discharge capacity of the modified LMR material is 153.1 mAhg(-1) at 5 C compared to 139.1 mAhg(-1) with the pristine material. The capacity retention of the modified material is 82.8% after 200 cycles at 1 C, which is higher than the 77.1% capacity retention of the pristine material. X-ray photoelectron spectroscopy (XPS) reveals that the CeO2 coating layer has a significant role in mitigating oxygen release from the surface of the LMR material during cycling.
引用
收藏
页码:3052 / 3061
页数:10
相关论文
共 40 条
[1]   Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes [J].
Assat, Gaurav ;
Foix, Dominique ;
Delacourt, Charles ;
Iadecola, Antonella ;
Dedryvere, Remi ;
Tarascon, Jean-Marie .
NATURE COMMUNICATIONS, 2017, 8
[2]   High-Capacity Spherical LiNi0.82Co0.15Al0.03O2 Cathode for Lithium-Ion Batteries [J].
Bai, Guoliang ;
Wang, Chunhua ;
Luo, Jiaojiao ;
Xia, Hongyu ;
Luo, Qibo ;
Wang, Junwei ;
Cheng, Di .
CHEMISTRYSELECT, 2019, 4 (31) :9050-9054
[3]   The Origin of Capacity Fade in the Li2MnO3•LiMO2 (M = Li, Ni, Co, Mn) Microsphere Positive Electrode: An Operando Neutron Diffraction and Transmission X-ray Microscopy Study [J].
Chen, Chih-Jung ;
Pang, Wei Kon ;
Mori, Tatsuhiro ;
Peterson, Vanessa K. ;
Sharma, Neeraj ;
Lee, Po-Han ;
Wu, She-huang ;
Wang, Chun-Chieh ;
Song, Yen-Fang ;
Liu, Ru-Shi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (28) :8824-8833
[4]   Review of the US Department of Energy's "Deep Dive" Effort to Understand Voltage Fade in Li- and Mn-Rich Cathodes [J].
Croy, Jason R. ;
Balasubramanian, Mahalingam ;
Gallagher, Kevin G. ;
Burrell, Anthony K. .
ACCOUNTS OF CHEMICAL RESEARCH, 2015, 48 (11) :2813-2821
[5]   Boosting the Electrochemical Performance of Li1.2Mn0.54Ni0.13Co0.13O2 by Atomic Layer-Deposited CeO2 Coating [J].
Gao, Yan ;
Patel, Rajankumar L. ;
Shen, Kuan-Yu ;
Wang, Xiaofeng ;
Axelbaum, Richard L. ;
Liang, Xinhua .
ACS OMEGA, 2018, 3 (01) :906-916
[6]   Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release [J].
Hu, Enyuan ;
Yu, Xiqian ;
Lin, Ruoqian ;
Bi, Xuanxuan ;
Lu, Jun ;
Bak, Seongmin ;
Nam, Kyung-Wan ;
Xin, Huolin L. ;
Jaye, Cherno ;
Fischer, Daniel A. ;
Amine, Kahlil ;
Yang, Xiao-Qing .
NATURE ENERGY, 2018, 3 (08) :690-698
[7]   Utilizing Environmental Friendly Iron as a Substitution Element in Spinel Structured Cathode Materials for Safer High Energy Lithium-Ion Batteries [J].
Hu, Enyuan ;
Bak, Seong-Min ;
Liu, Yijin ;
Liu, Jue ;
Yu, Xiqian ;
Zhou, Yong-Ning ;
Zhou, Jigang ;
Khalifah, Peter ;
Ariyoshi, Kingo ;
Nam, Kyung-Wan ;
Yang, Xiao-Qing .
ADVANCED ENERGY MATERIALS, 2016, 6 (03)
[8]   Li-Rich Layered Oxides and Their Practical Challenges: Recent Progress and Perspectives [J].
Hu, Sijiang ;
Pillai, Anoop. S. ;
Liang, Gemeng ;
Pang, Wei Kong ;
Wang, Hongqiang ;
Li, Qingyu ;
Guo, Zaiping .
ELECTROCHEMICAL ENERGY REVIEWS, 2019, 2 (02) :277-311
[9]   CeO2 nanorods and gold nanocrystals supported on CeO2 nanorods as catalyst [J].
Huang, PX ;
Wu, F ;
Zhu, BL ;
Gao, XP ;
Zhu, HY ;
Yan, TY ;
Huang, WP ;
Wu, SH ;
Song, DY .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (41) :19169-19174
[10]   Suppressing Manganese Dissolution from Lithium Manganese Oxide Spinel Cathodes with Single-Layer Graphene [J].
Jaber-Ansari, Laila ;
Puntambekar, Kanan P. ;
Kim, Soo ;
Aykol, Muratahan ;
Luo, Langli ;
Wu, Jinsong ;
Myers, Benjamin D. ;
Iddir, Hakim ;
Russell, John T. ;
Saldana, Spencer J. ;
Kumar, Rajan ;
Thackeray, Michael M. ;
Curtiss, Larry A. ;
Dravid, Vinayak P. ;
Wolverton, Chris ;
Hersam, Mark C. .
ADVANCED ENERGY MATERIALS, 2015, 5 (17)