The ∞-Wasserstein distance:: Local solutions and existence of optimal transport maps

被引:74
作者
Champion, Thierry [1 ]
De Pascale, Luigi [2 ]
Juutinen, Petri [3 ]
机构
[1] Univ Toulon & Var, UFR Sci & Tech, Lab Anal Non Lineaire Appl, F-83957 La Garde, France
[2] Univ Pisa, Dipartimento Matemat Applicata, I-56127 Pisa, Italy
[3] Univ Jyvaskyla, Dept Math & Stat, FI-40014 Jyvaskyla, Finland
关键词
infinite Wasserstein distance; restrictable solutions; infinite cyclical monotonicity;
D O I
10.1137/07069938X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the non-nonlinear optimal transportation problem of minimizing the cost functional C-infinity(lambda) = lambda-ess sup((x, y)is an element of Omega 2)vertical bar y- x vertical bar in the set of probability measures on Omega(2) having prescribed marginals. This corresponds to the question of characterizing the measures that realize the infinite Wasserstein distance. We establish the existence of "local" solutions and characterize this class with the aid of an adequate version of cyclical monotonicity. Moreover, under natural assumptions, we show that local solutions are induced by transport maps.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 34 条
[1]  
Ambrosio L, 2003, LECT NOTES MATH, V1813, P123
[2]  
Ambrosio L, 2003, LECT NOTES MATH, V1812, P1
[3]  
[Anonymous], **NON-TRADITIONAL**
[4]  
[Anonymous], 1926, ANN MATH, DOI DOI 10.2307/1968384
[5]   EXTENSION OF FUNCTIONS SATISFYING LIPSCHITZ CONDITIONS [J].
ARONSSON, G .
ARKIV FOR MATEMATIK, 1967, 6 (06) :551-&
[6]   A tour of the theory of absolutely minimizing functions [J].
Aronsson, G ;
Crandall, MG ;
Juutinen, P .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 41 (04) :439-505
[7]   MINIMIZATION PROBLEMS FOR FUNCTIONAL SUPX F(X F(X) F'(X)) [J].
ARONSSON, G .
ARKIV FOR MATEMATIK, 1965, 6 (01) :33-&
[8]  
Barron EN, 2001, ARCH RATION MECH AN, V157, P255, DOI 10.1007/s002050100133
[9]  
Benamou JD, 2000, NUMER MATH, V84, P375, DOI 10.1007/s002119900117
[10]   Are there infinite irrigation trees? [J].
Bernot, M. ;
Caselles, V. ;
Morel, J. M. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2006, 8 (03) :311-332