A lower bound on the number of inequivalent APN functions

被引:1
作者
Kaspers, Christian [1 ]
Zhou, Yue [2 ]
机构
[1] Otto von Guericke Univ, Inst Algebra & Geometry, D-39106 Magdeburg, Germany
[2] Natl Univ Def Technol, Dept Math, Changsha 410073, Peoples R China
基金
中国国家自然科学基金;
关键词
APN function; Vectorial Boolean function; CCZ-equivalence; EA-equivalence; EQUIVALENCES; PERMUTATION;
D O I
10.1016/j.jcta.2021.105554
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish a lower bound on the total number of inequivalent APN functions on the finite field with 2(2m) elements, where m is even. We obtain this result by proving that the APN functions introduced by Pott and the second author [22], which depend on three parameters k, s and alpha, are pairwise inequivalent for distinct choices of the parameters k and s. Moreover, we determine the automorphism group of these APN functions. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:38
相关论文
共 22 条
[1]   Determining the Walsh spectra of Taniguchi's and related APN-functions [J].
Anbar, Nurdagul ;
Kalayci, Tekgul ;
Meidl, Wilfried .
FINITE FIELDS AND THEIR APPLICATIONS, 2019, 60
[2]  
Beierle C., 2020, ARXIV200907204
[3]   The permutation group of affine-invariant extended cyclic codes [J].
Berger, TP ;
Charpin, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (06) :2194-2209
[4]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[5]   On the classification of APN functions up to dimension five [J].
Brinkmann, Marcus ;
Leander, Gregor .
DESIGNS CODES AND CRYPTOGRAPHY, 2008, 49 (1-3) :273-288
[6]  
Browning KA, 2010, CONTEMP MATH, V518, P33
[7]  
Budaghyan, 2014, CONSTRUCTION ANAL CR, VVIII
[8]  
Budaghyan L., 2008, P INT WORKSH BOOL FU, P1
[9]  
Budaghyan L, 2008, IEEE T INFORM THEORY, V54, P2354, DOI 10.1109/TIT.2008.920246
[10]   On equivalence between known families of quadratic APN functions [J].
Budaghyan, Lilya ;
Calderini, Marco ;
Villa, Irene .
FINITE FIELDS AND THEIR APPLICATIONS, 2020, 66