Jordan-algebraic aspects of nonconvex optimization over symmetric cones

被引:27
作者
Faybusovich, L [1 ]
Lu, Y [1 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
关键词
Jordan algebras; symmetric cone; nonconvex optimization;
D O I
10.1007/s00245-005-0835-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We illustrate the usefulness of Jordan-algebraic techniques for non-convex optimization by considering a potential-reduction algorithm for a non-convex quadratic function over the domain obtained as the intersection of a symmetric cone with an affine subspace.
引用
收藏
页码:67 / 77
页数:11
相关论文
共 13 条
[1]  
Bonnans JF., 2013, PERTURBATION ANAL OP
[2]  
Faraut J., 1994, Analysis on symmetric cones
[3]   Linear systems in Jordan algebras and primal-dual interior-point algorithms [J].
Faybusovich, L .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 86 (01) :149-175
[4]   A Jordan-algebraic approach to potential-reduction algorithms [J].
Faybusovich, L .
MATHEMATISCHE ZEITSCHRIFT, 2002, 239 (01) :117-129
[5]   Primal-dual algorithms and infinite-dimensional Jordan algebras of finite rank [J].
Faybusovich, L ;
Tsuchiya, T .
MATHEMATICAL PROGRAMMING, 2003, 97 (03) :471-493
[6]   Euclidean Jordan algebras and interior-point algorithms [J].
Faybusovich, L .
POSITIVITY, 1997, 1 (04) :331-357
[7]   A long-step primal-dual algorithm for the symmetric programming problem [J].
Faybusovich, L ;
Arana, R .
SYSTEMS & CONTROL LETTERS, 2001, 43 (01) :3-7
[8]   On a commutative class of search directions for linear programming over symmetric cones [J].
Muramatsu, M .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2002, 112 (03) :595-625
[9]  
Renegar J, 2001, SER MPSSIAM SERIES O
[10]   Extension of primal-dual interior point algorithms to symmetric cones [J].
Schmieta, SH ;
Alizadeh, F .
MATHEMATICAL PROGRAMMING, 2003, 96 (03) :409-438