Alloy-assisted deposition of three-dimensional arrays of atomic gold catalyst for crystal growth studies

被引:20
作者
Fang, Yin [1 ,2 ]
Jiang, Yuanwen [1 ,2 ]
Cherukara, Mathew J. [3 ]
Shi, Fengyuan [4 ]
Koehler, Kelliann [1 ,2 ]
Freyermuth, George [1 ]
Isheim, Dieter [5 ,6 ]
Narayanan, Badri [7 ,10 ]
Nicholls, Alan W. [4 ]
Seidman, David N. [5 ,6 ]
Sankaranarayanan, Subramanian K. R. S. [7 ,8 ]
Tian, Bozhi [1 ,2 ,9 ]
机构
[1] Univ Chicago, Dept Chem, Chicago, IL 60637 USA
[2] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
[3] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA
[4] Univ Illinois, Res Resources Ctr, Chicago, IL 60607 USA
[5] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[6] Northwestern Univ, Ctr Atom Probe Tomog NUCAPT, Evanston, IL 60208 USA
[7] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA
[8] Univ Chicago, Computat Inst, Chicago, IL 60637 USA
[9] Univ Chicago, Inst Biophys Dynam, Chicago, IL 60637 USA
[10] Argonne Natl Lab, Mat Sci Div, Argonne, IL 60439 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
SILICON NANOWIRES; SURFACE HYDROGEN; LIQUID; MORPHOLOGY; SUPERLATTICES;
D O I
10.1038/s41467-017-02025-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Large-scale assembly of individual atoms over smooth surfaces is difficult to achieve. A configuration of an atom reservoir, in which individual atoms can be readily extracted, may successfully address this challenge. In this work, we demonstrate that a liquid gold-silicon alloy established in classical vapor-liquid-solid growth can deposit ordered and three-dimensional rings of isolated gold atoms over silicon nanowire sidewalls. We perform ab initio molecular dynamics simulation and unveil a surprising single atomic gold-catalyzed chemical etching of silicon. Experimental verification of this catalytic process in silicon nanowires yields dopant-dependent, massive and ordered 3D grooves with spacing down to similar to 5 nm. Finally, we use these grooves as self-labeled and ex situ markers to resolve several complex silicon growths, including the formation of nodes, kinks, scale-like interfaces, and curved backbones.
引用
收藏
页数:10
相关论文
共 56 条
[1]   Twinning superlattices in indium phosphide nanowires [J].
Algra, Rienk E. ;
Verheijen, Marcel A. ;
Borgstrom, Magnus T. ;
Feiner, Lou-Fe ;
Immink, George ;
van Enckevort, Willem J. P. ;
Vlieg, Elias ;
Bakkers, Erik P. A. M. .
NATURE, 2008, 456 (7220) :369-372
[2]   High-resolution detection of Au catalyst atoms in Si nanowires [J].
Allen, Jonathan E. ;
Hemesath, Eric R. ;
Perea, Daniel E. ;
Lensch-Falk, Jessica L. ;
Li, Z. Y. ;
Yin, Feng ;
Gass, Mhairi H. ;
Wang, Peng ;
Bleloch, Andrew L. ;
Palmer, Richard E. ;
Lauhon, Lincoln J. .
NATURE NANOTECHNOLOGY, 2008, 3 (03) :168-173
[3]  
Allen M.P., 2011, Computer simulation of liquids
[4]   Controlled polytypic and twin-plane superlattices in III-V nanowires [J].
Caroff, P. ;
Dick, K. A. ;
Johansson, J. ;
Messing, M. E. ;
Deppert, K. ;
Samuelson, L. .
NATURE NANOTECHNOLOGY, 2009, 4 (01) :50-55
[5]   Incorporation and redistribution of impurities into silicon nanowires during metal-particle-assisted growth [J].
Chen, Wanghua ;
Yu, Linwei ;
Misra, Soumyadeep ;
Fan, Zheng ;
Pareige, Philippe ;
Patriarche, Gilles ;
Bouchoule, Sophie ;
Cabarrocas, Pere Roca I. .
NATURE COMMUNICATIONS, 2014, 5
[6]   Encoding Abrupt and Uniform Dopant Profiles in Vapor-Liquid-Solid Nanowires by Suppressing the Reservoir Effect of the Liquid Catalyst [J].
Christesen, Joseph D. ;
Pinion, Christopher W. ;
Zhang, Xing ;
McBride, James R. ;
Cahoon, James F. .
ACS NANO, 2014, 8 (11) :11790-11798
[7]   Synthetically Encoding 10 nm Morphology in Silicon Nanowires [J].
Christesen, Joseph D. ;
Pinion, Christopher W. ;
Grumstrup, Erik M. ;
Papanikolas, John M. ;
Cahoon, James F. .
NANO LETTERS, 2013, 13 (12) :6281-6286
[8]   Identification of an Intrinsic Source of Doping Inhomogeneity in Vapor-Liquid-Solid-Grown Nanowires [J].
Connell, Justin G. ;
Yoon, KunHo ;
Perea, Daniel E. ;
Schwalbach, Edwin J. ;
Voorhees, Peter W. ;
Lauhon, Lincoln J. .
NANO LETTERS, 2013, 13 (01) :199-206
[9]  
Cottrell TL, 1958, The strengths of chemical bonds
[10]  
Custance O, 2009, NAT NANOTECHNOL, V4, P803, DOI [10.1038/NNANO.2009.347, 10.1038/nnano.2009.347]