Existence results for fractional neutral integro-differential equations with state-dependent delay

被引:82
作者
Carvalho dos Santos, Jose Paulo [1 ]
Arjunan, M. Mallika [2 ]
Cuevas, Claudio [3 ]
机构
[1] Univ Fed Alfenas, Inst Ciencias Exatas, BR-37130000 Alfenas, MG, Brazil
[2] Karunya Univ, Dept Math, Coimbatore 641114, Tamil Nadu, India
[3] Univ Fed Pernambuco, Dept Matemat, BR-50540740 Recife, PE, Brazil
关键词
Integro-differential equations; Neutral equations; State-dependent delay; Caputo derivative; FUNCTIONAL-DIFFERENTIAL EQUATIONS; PERIODIC-SOLUTIONS; UNIQUENESS;
D O I
10.1016/j.camwa.2011.03.048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the existence of mild solutions for a class of abstract fractional neutral integro-differential equations with state-dependent delay. The results are obtained by using the Leray-Schauder alternative fixed point theorem. An example is provided to illustrate the main results. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1275 / 1283
页数:9
相关论文
共 46 条
[1]   Existence of fractional neutral functional differential equations [J].
Agarwal, R. P. ;
Zhou, Yong ;
He, Yunyun .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (03) :1095-1100
[2]   A Survey on Semilinear Differential Equations and Inclusions Involving Riemann-Liouville Fractional Derivative [J].
Agarwal, Ravi P. ;
Belmekki, Mohammed ;
Benchohra, Mouffak .
ADVANCES IN DIFFERENCE EQUATIONS, 2009, :1-47
[3]   Weighted pseudo-almost periodic solutions of a class of semilinear fractional differential equations [J].
Agarwal, Ravi P. ;
de Andrade, Bruno ;
Cuevas, Claudio .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) :3532-3554
[4]   On Type of Periodicity and Ergodicity to a Class of Fractional Order Differential Equations [J].
Agarwal, Ravi P. ;
de Andrade, Bruno ;
Cuevas, Claudio .
ADVANCES IN DIFFERENCE EQUATIONS, 2010,
[5]   On the concept of solution for fractional differential equations with uncertainty [J].
Agarwal, Ravi P. ;
Lakshmikantham, V. ;
Nieto, Juan J. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (06) :2859-2862
[6]   A Survey on Existence Results for Boundary Value Problems of Nonlinear Fractional Differential Equations and Inclusions [J].
Agarwal, Ravi P. ;
Benchohra, Mouffak ;
Hamani, Samira .
ACTA APPLICANDAE MATHEMATICAE, 2010, 109 (03) :973-1033
[7]  
AGARWAL RP, ANAL RESOLVENT UNPUB
[8]  
Anh V., 2003, J. Appl. Math. and Stoch. Anal., V16, P97, DOI DOI 10.1155/S1048953303000078
[9]  
[Anonymous], 2000, Applications of Fractional Calculus in Physics
[10]  
[Anonymous], 1987, NONLINEAR OPERATORS