Fractional moments of automorphic L-functions on GL(m)

被引:7
作者
Pi, Qinghua [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Moments; Automorphic L-functions; GRC; RIEMANN ZETA-FUNCTION; CUSP FORMS; POWER MOMENTS;
D O I
10.1007/s11401-011-0650-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let pi be an irreducible unitary cuspidal representation of GL(m)(A(Q)), m >= 2. Assume that pi is self-contragredient. The author gets upper and lower bounds of the same order for fractional moments of automorphic L-function L(s, pi) on the critical line under Generalized Ramanujan Conjecture; the upper bound being conditionally subject to the truth of Generalized Riemann Hypothesis.
引用
收藏
页码:631 / 642
页数:12
相关论文
共 20 条
[1]  
Deligne P., 1974, PUBL MATH I HAUTES E, V43, P273
[2]   FRACTIONAL MOMENTS OF AUTOMORPHIC L-FUNCTIONS [J].
Fomenko, O. M. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2011, 22 (02) :321-335
[3]  
GABRIEL R. M., 1927, J LONDON MATH SOC, V2, P112, DOI 10.1112/jlms/s1-2.2.112
[4]   THE SQUARE MEAN OF DIRICHLET SERIES ASSOCIATED WITH CUSP FORMS [J].
GOOD, A .
MATHEMATIKA, 1982, 29 (58) :278-295
[5]  
Hardy GH, 1918, ACTA MATH-DJURSHOLM, V41, P119
[6]   FRACTIONAL MOMENTS OF THE RIEMANN ZETA-FUNCTION .2. [J].
HEATHBROWN, DR .
QUARTERLY JOURNAL OF MATHEMATICS, 1993, 44 (174) :185-197
[7]  
HEATHBROWN DR, 1981, J LOND MATH SOC, V24, P65
[8]  
Ingham A. E., 1926, Proceedings of the London Mathematical Society, V27, P273
[9]  
KACENAS A, 2005, LITH MATH J, V45, P173
[10]   On fractional power moments of zeta-functions associated with certain cusp forms [J].
Laurincikas, A. ;
Steuding, J. .
ACTA APPLICANDAE MATHEMATICAE, 2007, 97 (1-3) :25-39