A Retinal Prosthesis Technology Based on CMOS Microelectronics and Microwire Glass Electrodes

被引:22
作者
Scribner, Dean [1 ]
Johnson, Lee [2 ]
Skeath, Perry [2 ]
Klein, Richard [2 ]
Ilg, Douglas [2 ]
Wasserman, Lucienne [2 ]
Fernandez, Nicolas [1 ]
Freeman, Wade [3 ]
Peele, John [1 ]
Perkins, F. Keith [4 ]
Friebele, E. Joseph [1 ]
Bassett, William E. [2 ]
Howard, J. Grant [1 ]
Krebs, William [5 ]
机构
[1] USN, Res Lab, Div Opt Sci, Washington, DC 20375 USA
[2] SFA Inc, Crofton, MD 21114 USA
[3] Smart Log, Vienna, VA 22180 USA
[4] USN, Res Lab, Div Elect Sci & Technol, Washington, DC 20375 USA
[5] Off Naval Res, Washington, DC 20375 USA
关键词
Biomedical; channel glass; electrode array; functional electrical stimulation; implantable devices; microstimulator; retinal prosthesis;
D O I
10.1109/TBCAS.2007.893186
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A very large format neural stimulator device, to be used in future retinal prosthesis experiments, has been designed, fabricated, and tested. The device was designed to be positioned against a human retina for short periods in an operating room environment. Demonstrating a very large format, parallel interface between a 2-D microelectronic stimulator array and neural tissue would be an important step in proving the feasibility of high resolution retinal prosthesis for the blind. The architecture of the test device combines several novel components, including microwire glass, a microelectronic multiplexer, and a microcable connector. The array format is 80 x 40 array pixels with approximately 20 microwire electrodes per pixel. The custom assembly techniques involve indium bump bonding, ribbon bonding, and encapsulation. The design, fabrication, and testing of the device has resolved several important issues regarding the feasibility of high-resolution retinal prosthesis, namely, that the combination of conventional CMOS electronics and microwire glass provides a viable approach for a high resolution retinal prosthesis device. Temperature change from power dissipation within the device and maximum electrical output current levels suggest that the device is acceptable for acute human tests.
引用
收藏
页码:73 / 84
页数:12
相关论文
共 15 条
[1]   The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa [J].
Chow, AY ;
Chow, VY ;
Packo, KH ;
Pollack, JS ;
Peyman, GA ;
Schuchard, R .
ARCHIVES OF OPHTHALMOLOGY, 2004, 122 (04) :460-469
[2]   Visual perception elicited by electrical stimulation of retina in blind humans [J].
Humayun, MS ;
deJuan, E ;
Dagnelie, G ;
Greenberg, RJ ;
Prost, RH ;
Phillips, DH .
ARCHIVES OF OPHTHALMOLOGY, 1996, 114 (01) :40-46
[3]   Visual perception in a blind subject with a chronic microelectronic retinal prosthesis [J].
Humayun, MS ;
Weiland, JD ;
Fujii, GY ;
Greenberg, R ;
Williamson, R ;
Little, J ;
Mech, B ;
Cimmarusti, V ;
Van Boemel, G ;
Dagnelie, G ;
de Juan, E .
VISION RESEARCH, 2003, 43 (24) :2573-2581
[4]  
Jensen RJ, 2005, INVEST OPHTH VIS SCI, V46, p[5279, E]
[5]   Electrical stimulation of isolated retina with microwire glass electrodes [J].
Johnson, L ;
Perkins, FK ;
O'Hearn, T ;
Skeath, P ;
Merritt, C ;
Frieble, J ;
Sadda, S ;
Humayun, M ;
Scribner, D .
JOURNAL OF NEUROSCIENCE METHODS, 2004, 137 (02) :265-273
[6]  
JOHNSON L, 2005, INVEST OPHTH VIS SCI, V46, P1498
[7]   Retinal prosthesis for the blind [J].
Margalit, E ;
Maia, M ;
Weiland, JD ;
Greenberg, RJ ;
Fujii, GY ;
Torres, G ;
Piyathaisere, DV ;
O'Hearn, TM ;
Liu, WT ;
Lazzi, G ;
Dagnelie, G ;
Scribner, DA ;
de Juan, E ;
Humayun, MS .
SURVEY OF OPHTHALMOLOGY, 2002, 47 (04) :335-356
[8]  
PANIGRAHI D, 2005, INVEST OPHTH VIS SCI, V46, P1532
[9]   Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays [J].
Rizzo, JF ;
Wyatt, J ;
Loewenstein, J ;
Kelly, S ;
Shire, D .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2003, 44 (12) :5355-5361
[10]   A retinal prosthesis device based on an 80x40 hybrid microelectronic-microwire glass array [J].
Scribner, D ;
Johnson, L ;
Klein, R ;
Basset, W ;
Howard, JG ;
Skeath, P ;
Wasserman, L ;
Wright, B ;
Perkins, F ;
Peckerar, M ;
Finch, BJ ;
Graham, R ;
Trautfield, C ;
Taylor, S ;
Humayun, M .
PROCEEDINGS OF THE IEEE 2003 CUSTOM INTEGRATED CIRCUITS CONFERENCE, 2003, :517-520