Role of thermal excitation in ultrafast energy transfer in chlorosomes revealed by two-dimensional electronic spectroscopy

被引:12
作者
Jun, Sunhong [1 ,2 ]
Yang, Cheolhee [1 ,2 ]
Kim, Tae Wu [1 ,2 ]
Isaji, Megumi [3 ]
Tamiaki, Hitoshi [3 ]
Ihee, Hyotcherl [1 ,2 ]
Kim, Jeongho [4 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Chem, Taejon 305701, South Korea
[2] Inst for Basic Sci Korea, Ctr Nanomat & Chem React, Taejon 305701, South Korea
[3] Ritsumeikan Univ, Grad Sch Life Sci, Kusatsu, Shiga 5258577, Japan
[4] Inha Univ, Dept Chem, Inchon 402751, South Korea
基金
新加坡国家研究基金会; 日本学术振兴会;
关键词
TEMPERATURE-DEPENDENCE; CHLOROBACULUM-TEPIDUM; TRANSFER DYNAMICS; EXCITON DYNAMICS; DIFFUSION; ANTENNAE; STATE; PROBE; BACTERIOCHLOROPHYLLS; ORGANIZATION;
D O I
10.1039/c5cp01355k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Chlorosomes are the largest light harvesting complexes in nature and consist of many bacteriochlorophyll pigments forming self-assembled J-aggregates. In this work, we use two-dimensional electronic spectroscopy (2D-ES) to investigate ultrafast dynamics of excitation energy transfer (EET) in chlorosomes and their temperature dependence. From time evolution of the measured 2D electronic spectra of chlorosomes, we directly map out the distribution of the EET rate among the manifold of exciton states in a 2D energy space. In particular, it is found that the EET rate varies gradually depending on the energies of energy-donor and energy-acceptor states. In addition, from comparative 2D-ES measurements at 77 K and room temperature, we show that the EET rate exhibits subtle dependence on both the exciton energy and temperature, demonstrating the effect of thermal excitation on the EET rate. This observation suggests that active thermal excitation at room temperature prevents the excitation trapping at low-energy states and thus promotes efficient exciton diffusion in chlorosomes at ambient temperature.
引用
收藏
页码:17872 / 17879
页数:8
相关论文
共 56 条
  • [1] Twenty-Fold Enhancement of Molecular Fluorescence by Coupling to a J-Aggregate Critically Coupled Resonator
    Akselrod, Gleb M.
    Walker, Brian J.
    Tisdale, William A.
    Bawendi, Moungi G.
    Bulovic, Vladimir
    [J]. ACS NANO, 2012, 6 (01) : 467 - 471
  • [2] ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES
    ANDERSON, PW
    [J]. PHYSICAL REVIEW, 1958, 109 (05): : 1492 - 1505
  • [3] Two-Dimensional Electronic Spectroscopy Reveals Ultrafast Downhill Energy Transfer in Photosystem I Trimers of the Cyanobacterium Thermosynechococcus elongatus
    Anna, Jessica M.
    Ostroumov, Evgeny E.
    Maghlaoui, Karim
    Barber, James
    Scholes, Gregory D.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (24): : 3677 - 3684
  • [4] Bakalis LD, 1999, J PHYS CHEM B, V103, P6620, DOI 10.1021/jp990354gCCC:$18.00
  • [5] Blankenship R.E., 2014, MOL MECH PHOTOSYNTHE
  • [6] Two-dimensional spectroscopy of electronic couplings in photosynthesis
    Brixner, T
    Stenger, J
    Vaswani, HM
    Cho, M
    Blankenship, RE
    Fleming, GR
    [J]. NATURE, 2005, 434 (7033) : 625 - 628
  • [7] The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment-protein complexes
    Chin, A. W.
    Prior, J.
    Rosenbach, R.
    Caycedo-Soler, F.
    Huelga, S. F.
    Plenio, M. B.
    [J]. NATURE PHYSICS, 2013, 9 (02) : 113 - 118
  • [8] Two-Dimensional Electronic Spectroscopy Reveals Ultrafast Energy Diffusion in Chlorosomes
    Dostal, Jakub
    Mancal, Tomas
    Augulis, Ramunas
    Vacha, Frantisek
    Psencik, Jakub
    Zigmantas, Donatas
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (28) : 11611 - 11617
  • [9] Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems
    Engel, Gregory S.
    Calhoun, Tessa R.
    Read, Elizabeth L.
    Ahn, Tae-Kyu
    Mancal, Tomas
    Cheng, Yuan-Chung
    Blankenship, Robert E.
    Fleming, Graham R.
    [J]. NATURE, 2007, 446 (7137) : 782 - 786
  • [10] Fanshun M., 2005, SOLAR CELLS BASED CY