CORRECTION OF HIGH-ORDER BDF CONVOLUTION QUADRATURE FOR FRACTIONAL EVOLUTION EQUATIONS

被引:164
作者
Jin, Bangti [1 ]
Li, Buyang [2 ]
Zhou, Zhi [2 ]
机构
[1] UCL, Dept Comp Sci, Gower St, London WC1E 6BT, England
[2] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
fractional evolution equation; convolution quadrature; initial correction; backward differentiation formulas; nonsmooth and incompatible data; error estimates; DISCONTINUOUS GALERKIN METHODS; DIFFUSION-WAVE EQUATIONS; SPECTRAL METHOD; APPROXIMATIONS; STABILITY; SCHEMES;
D O I
10.1137/17M1118816
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop proper correction formulas at the starting k - 1 steps to restore the desired k th-order convergence rate of the k-step BDF convolution quadrature for discretizing evolution equations involving a fractional-order derivative in time. The desired k th-order convergence rate can be achieved even if the source term is not compatible with the initial data, which is allowed to be nonsmooth. We provide complete error estimates for the subdiffusion case alpha is an element of (0, 1) and sketch the proof for the di ff usion-wave case alpha is an element of(1, 2). Extensive numerical examples are provided to illustrate the e ff ectiveness of the proposed scheme.
引用
收藏
页码:A3129 / A3152
页数:24
相关论文
共 50 条
  • [21] High-Order Numerical Methods for Solving Time Fractional Partial Differential Equations
    Zhiqiang Li
    Zongqi Liang
    Yubin Yan
    Journal of Scientific Computing, 2017, 71 : 785 - 803
  • [22] A New High-Order Fractional Parallel Iterative Scheme for Solving Nonlinear Equations
    Shams, Mudassir
    Carpentieri, Bruno
    SYMMETRY-BASEL, 2024, 16 (11):
  • [23] Local Discontinuous Galerkin Methods for High-Order Time-Dependent Partial Differential Equations
    Xu, Yan
    Shu, Chi-Wang
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2010, 7 (01) : 1 - 46
  • [24] STABILITY-PRESERVING HIGH-ORDER METHODS FOR MULTITERM FRACTIONAL DIFFERENTIAL EQUATIONS
    Garrappa, Roberto
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (04):
  • [25] ERROR ANALYSIS OF A FVEM FOR FRACTIONAL ORDER EVOLUTION EQUATIONS WITH NONSMOOTH INITIAL DATA
    Karaa, Samir
    Pani, Amiya K.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (02): : 773 - 801
  • [26] A high-order compact difference method for time fractional Fokker-Planck equations with variable coefficients
    Ren, Lei
    Liu, Lei
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (03)
  • [27] Summation-by-parts operators and high-order quadrature
    Hicken, J. E.
    Zingg, D. W.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 237 (01) : 111 - 125
  • [28] Convergence of Runge-Kutta-based convolution quadrature for semilinear fractional differential equations
    Zhao, Jingjun
    Kong, Jiameng
    Xu, Yang
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2024, 101 (11) : 1326 - 1340
  • [29] Convolution quadrature for Hadamard fractional calculus and correction methods for the subdiffusion with singular source terms
    Yin, Baoli
    Zhang, Guoyu
    Liu, Yang
    Li, Hong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 138
  • [30] High-order regularization in lattice-Boltzmann equations
    Mattila, Keijo K.
    Philippi, Paulo C.
    Hegele, Luiz A., Jr.
    PHYSICS OF FLUIDS, 2017, 29 (04)