Nanoscale Spin Wave Localization Using Ferromagnetic Resonance Force Microscopy

被引:40
作者
Chia, Han-Jong [1 ,2 ]
Guo, Feng [1 ,2 ]
Belova, L. M. [3 ]
McMichael, R. D. [1 ]
机构
[1] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA
[2] Univ Maryland, Maryland Nanoctr, College Pk, MD 20742 USA
[3] Royal Inst Technol, Dept Mat Sci & Engn, S-10044 Stockholm, Sweden
关键词
MEMORY; MODES; LOGIC;
D O I
10.1103/PhysRevLett.108.087206
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the dipolar fields from a magnetic cantilever tip to generate localized spin wave precession modes in an in-plane magnetized, thin ferromagnetic film. Multiple resonances from a series of localized modes are detected by ferromagnetic resonance force microscopy and reproduced by micromagnetic models that also reveal highly anisotropic mode profiles. Modeled scans of line defects using the lowest-frequency mode provide resolution predictions of (94.5 +/- 1.5) nm in the field direction, and (390 +/- 2) nm perpendicular to the field.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Determination of the electrostatic lever arm of carbon nanotube field effect transistors using Kelvin force microscopy
    Brunel, David
    Deresmes, Dominique
    Melin, Thierry
    APPLIED PHYSICS LETTERS, 2009, 94 (22)
  • [42] Enhancement in sensitivity of guided-wave surface plasmon resonance sensor using graphene
    Yue, Chong
    Lang, Yaopu
    Zhou, Xinlin
    Liu, Qinggang
    2019 INTERNATIONAL CONFERENCE ON OPTICAL INSTRUMENTS AND TECHNOLOGY: MICRO/NANO PHOTONICS: MATERIALS AND DEVICES, 2020, 11440
  • [43] Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate
    Wang, Ji-Shuo
    Xu, Cai-Bin
    Zhao, You-Xuan
    Hu, Ning
    Deng, Ming-Xi
    CHINESE PHYSICS B, 2022, 31 (01)
  • [44] A Biologist's Guide to Traction Force Microscopy Using Polydimethylsiloxane Substrate for Two-Dimensional Cell Cultures
    Teo, Jessica L.
    Lim, Chwee Teck
    Yap, Alpha S.
    Saw, Thuan Beng
    STAR PROTOCOLS, 2020, 1 (02):
  • [45] Multimodal atomic force microscopy with optimized higher eigenmode sensitivity using on-chip piezoelectric actuation and sensing
    Ruppert, Michael G.
    Moore, Steven, I
    Zawierta, Michal
    Fleming, Andrew J.
    Putrino, Gino
    Yong, Yuen K.
    NANOTECHNOLOGY, 2019, 30 (08)
  • [46] Longitudinal wave localization using a one-dimensional phononic crystal with differently patterned double defects
    Jo, Soo-Ho
    Youn, Byeng D.
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2023, 237
  • [47] Assessing the performance of commercial and biological gas hydrate inhibitors using nuclear magnetic resonance microscopy and a stirred autoclave
    Daraboina, Nagu
    Moudrakovski, Igor L.
    Ripmeester, John A.
    Walker, Virginia K.
    Englezos, Peter
    FUEL, 2013, 105 : 630 - 635
  • [48] Highly Sensitive Sensing of Refractive Index Using Surface Lattice Resonance in Capacitive Metal Meshes at Millimeter Wave Frequencies
    Bae, Jongsuck
    Nozokido, Tatsuo
    IEEE SENSORS JOURNAL, 2023, 23 (21) : 25927 - 25937
  • [49] Characterization of Ge2Sb2Te5 thin film alloys using conductive-tip atomic force microscopy
    Chang, Chia Min
    Liu, Yen Ju
    Tseng, Ming Lun
    Chu, Nien-Nan
    Huang, Ding-Wei
    Mansuripur, Masud
    Tsai, Din Ping
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2012, 249 (10): : 1945 - 1950
  • [50] Characterization of molecular organization in pentacene thin films on SiO2 surface using infrared spectroscopy, spectroscopic ellipsometry, and atomic force microscopy
    Fratczak, E. Z.
    Uznanski, P.
    Moneta, M. E.
    CHEMICAL PHYSICS, 2015, 456 : 49 - 56