Nanoscale Spin Wave Localization Using Ferromagnetic Resonance Force Microscopy

被引:40
作者
Chia, Han-Jong [1 ,2 ]
Guo, Feng [1 ,2 ]
Belova, L. M. [3 ]
McMichael, R. D. [1 ]
机构
[1] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA
[2] Univ Maryland, Maryland Nanoctr, College Pk, MD 20742 USA
[3] Royal Inst Technol, Dept Mat Sci & Engn, S-10044 Stockholm, Sweden
关键词
MEMORY; MODES; LOGIC;
D O I
10.1103/PhysRevLett.108.087206
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the dipolar fields from a magnetic cantilever tip to generate localized spin wave precession modes in an in-plane magnetized, thin ferromagnetic film. Multiple resonances from a series of localized modes are detected by ferromagnetic resonance force microscopy and reproduced by micromagnetic models that also reveal highly anisotropic mode profiles. Modeled scans of line defects using the lowest-frequency mode provide resolution predictions of (94.5 +/- 1.5) nm in the field direction, and (390 +/- 2) nm perpendicular to the field.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Spin waves modulated in a ferromagnetic bilayer system calculated using the interface rescaling approach
    Zhou, Wen Ping
    Yun, Guo Hong
    Liang, Xi Xia
    PHYSICAL REVIEW B, 2008, 77 (10)
  • [32] Nanoscale Structural Characterization of Individual Viral Particles Using Atomic Force Microscopy Infrared Spectroscopy (AFM-IR) and Tip-Enhanced Raman Spectroscopy (TERS)
    Dou, Tianyi
    Li, Zhandong
    Zhang, Junjie
    Evilevitch, Alex
    Kurouski, Dmitry
    ANALYTICAL CHEMISTRY, 2020, 92 (16) : 11297 - 11304
  • [33] Quantitative Contact Resonance Force Microscopy for Viscoelastic Measurement of Soft Materials at the Solid-Liquid Interface
    Churnside, Allison B.
    Tung, Ryan C.
    Killgore, Jason P.
    LANGMUIR, 2015, 31 (40) : 11143 - 11149
  • [34] Direct observation of optical near field in nanophotonics devices at the nanoscale using Scanning Thermal Microscopy
    Grajower, Meir
    Desiatov, Boris
    Goykhman, Ilya
    Stern, Liron
    Mazurski, Noa
    Levy, Uriel
    OPTICS EXPRESS, 2015, 23 (21): : 27763 - 27775
  • [35] Probing anodic oxidation kinetics and nanoscale heterogeneity within TiO2 films by Conductive Atomic Force Microscopy and combined techniques
    Diamanti, M. V.
    Souier, T.
    Stefancich, M.
    Chiesa, M.
    Pedeferri, M. P.
    ELECTROCHIMICA ACTA, 2014, 129 : 203 - 210
  • [36] Single-electron spin resonance in a nanoelectronic device using a global field
    Vahapoglu, Ensar
    Slack-Smith, James P.
    Leon, Ross C. C.
    Lim, Wee Han
    Hudson, Fay E.
    Day, Tom
    Tanttu, Tuomo
    Yang, Chih Hwan
    Laucht, Arne
    Dzurak, Andrew S.
    Pla, Jarryd J.
    SCIENCE ADVANCES, 2021, 7 (33)
  • [37] Detection of Short-Waved Spin Waves in Individual Microscopic Spin-Wave Waveguides Using the Inverse Spin Hall Effect
    Bracher, T.
    Fabre, M.
    Meyer, T.
    Fischer, T.
    Auffret, S.
    Boulle, O.
    Ebels, U.
    Pirro, P.
    Gaudin, G.
    NANO LETTERS, 2017, 17 (12) : 7234 - 7241
  • [38] Lamb wave tomography for defect localization using wideband dispersion reversal method
    Ling, Feiyao
    Chen, Honglei
    Lang, Yanfeng
    Yang, Zhibo
    Xu, Kailiang
    Ta, Dean
    MEASUREMENT, 2023, 216
  • [39] SPICE Circuit Modeling of PMA Spin Wave Bus Excited Using Magnetoelectric Effect
    Dutta, Sourav
    Nikonov, Dmitri E.
    Manipatruni, Sasikanth
    Young, Ian A.
    Naeemi, Azad
    IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (09)
  • [40] Spin-Wave Resonance in One-Dimensional Magnonic Crystals by an Example of Multilayer Co-P Films
    Iskhakov, R. S.
    Stolyar, S. V.
    Chekanova, L. A.
    Vazhenina, I. G.
    PHYSICS OF THE SOLID STATE, 2020, 62 (10) : 1861 - 1867