Optical emission spectroscopy as a process control tool during plasma enhanced chemical vapor deposition of microcrystalline silicon thin films

被引:5
作者
Du, C. C. [1 ]
Wei, T. C. [2 ,3 ]
Chang, C. H. [1 ]
Lee, S. L. [1 ]
Liang, M. W. [1 ]
Huang, J. R. [1 ]
Wu, C. H. [1 ]
Shirakura, A. [4 ]
Morisawa, R. [5 ]
Suzuki, T. [5 ]
机构
[1] Ind Technol Res Inst, Dept Solar Energy, Hsinchu 31040, Taiwan
[2] Chung Yuan Christian Univ, R&D Ctr Membrane Technol, Chungli 32023, Taiwan
[3] Chung Yuan Christian Univ, Dept Chem Engn, Chungli 32023, Taiwan
[4] Kanagawa Acad Sci & Technol, Kawasaki, Kanagawa 2130012, Japan
[5] Keio Univ, Dept Mech Engn, Yokosuka, Kanagawa 2370061, Japan
关键词
Tandem solar cell; Microcrystalline silicon thin film; Process control; Optical emission spectroscopy; SI;
D O I
10.1016/j.tsf.2011.08.110
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The decisive criterion associated with the species emission intensity ratio (H alpha/SiH*) which characterizes the crystallinity of microcrystalline silicon (mu c-Si) film was found to display an unstable behavior resulting from species concentration variation during mu c-Si film growth with optical emission spectroscopy (OES) tool. In this study, a real-time process control system i.e. closed-loop system was developed. It aims to control the species intensity ratio with OES device in a very high frequency (VHF) plasma enhanced chemical vapor deposition reactor, via modulating the VHF power and silane dilution to improve mu c-Si film growth for high efficiency a-Si/mu c-Si tandem solar cell. The experiment results show that the closed-loop system stabilized the H alpha/SiH* intensity ratio within a variation of 5% during the mu c-Si film deposition process. Higher growth rate of mu c-Si film with the same crystallinity was obtained in the closed loop system which consumed less power and SiH4 gas than in the open loop system, i.e. without process control. (c) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:3999 / 4002
页数:4
相关论文
共 17 条
[1]  
Dingemans G., 2007, P 22 EUR PHOT SOL EN, P1855
[2]   Optical emission spectroscopy study toward high rate growth of microcrystalline silicon [J].
Fukuda, Y ;
Sakuma, Y ;
Fukai, C ;
Fujimura, Y ;
Azuma, K ;
Shirai, H .
THIN SOLID FILMS, 2001, 386 (02) :256-260
[3]   High rate deposition of microcrystalline silicon using conventional plasma-enhanced chemical vapor deposition [J].
Guo, LH ;
Kondo, M ;
Fukawa, M ;
Saitoh, K ;
Matsuda, A .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1998, 37 (10A) :L1116-L1118
[4]   Raman study of thin films of amorphous-to-microcrystalline silicon prepared by hot-wire chemical vapor deposition [J].
Han, DX ;
Lorentzen, JD ;
Weinberg-Wolf, J ;
McNeil, LE ;
Wang, Q .
JOURNAL OF APPLIED PHYSICS, 2003, 94 (05) :2930-2936
[5]  
KATSIA E, 2004, 19 EUR PHOT SOL EN C, P1601
[6]   Process control of high rate microcrystalline silicon based solar cell deposition by optical emission spectroscopy [J].
Kilper, T. ;
van den Donker, M. N. ;
Carius, R. ;
Rech, B. ;
Braeuer, G. ;
Repmann, T. .
THIN SOLID FILMS, 2008, 516 (14) :4633-4638
[7]   Recent progress in micromorph solar cells [J].
Meier, J ;
Dubail, S ;
Cuperus, J ;
Kroll, U ;
Platz, R ;
Torres, P ;
Selvan, JAA ;
Pernet, P ;
Beck, N ;
Vaucher, NP ;
Hof, C ;
Fischer, D ;
Keppner, H ;
Shah, A .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1998, 227 :1250-1256
[8]   Real-time carbon content control for PECVD ZrO2 thin-film growth [J].
Ni, D ;
Lou, YM ;
Christofides, PD ;
Sha, L ;
Lao, S ;
Chang, JP .
IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2004, 17 (02) :221-230
[9]   New materials and deposition techniques for highly efficient silicon thin film solar cells [J].
Rech, B ;
Kluth, O ;
Repmann, T ;
Roschek, T ;
Springer, J ;
Müller, J ;
Finger, F ;
Stiebig, H ;
Wagner, H .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2002, 74 (1-4) :439-447
[10]   Microcrystalline silicon and 'micromorph' tandem solar cells [J].
Shah, A ;
Meier, J ;
Vallat-Sauvain, E ;
Droz, C ;
Kroll, U ;
Wyrsch, N ;
Guillet, J ;
Graf, U .
THIN SOLID FILMS, 2002, 403 :179-187