NONLINEAR SEQUENTIAL RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONLOCAL AND INTEGRAL BOUNDARY CONDITIONS

被引:6
作者
Asawasamrit, Suphawat [1 ]
Phuangthong, Nawapol [1 ]
Ntouyas, Sotiris K. [2 ,3 ]
Tariboon, Jessada [1 ]
机构
[1] King Mongkuts Univ Technol North Bangkok, Fac Appl Sci, Dept Math, Intelligent & Nonlinear Dynam Innovat Res Ctr, Bangkok 10800, Thailand
[2] Univ Ioannina, Dept Math, Ioannina 45110, Greece
[3] King Abdulaziz Univ, Fac Sci, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, POB 80203, Jeddah 21589, Saudi Arabia
来源
INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS | 2019年 / 17卷 / 01期
关键词
fractional derivatives; fractional integral; boundary value problems; existence; uniqueness; fixed point theorems; EXISTENCE;
D O I
10.28924/2291-8639-17-2019-47
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we discuss the existence and uniqueness of solutions for a new class of sequential fractional differential equations of Riemann-Liouville and Caputo types with nonlocal integral boundary conditions, by using standard fixed point theorems. We also demonstrate the application of the obtained results with the aid of examples.
引用
收藏
页码:47 / 63
页数:17
相关论文
共 21 条
[1]   Fractional functional differential equations with causal operators in Banach spaces [J].
Agarwal, Ravi P. ;
Zhou, Yong ;
Wang, JinRong ;
Luo, Xiannan .
MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (5-6) :1440-1452
[2]  
Ahmad B., 2017, Hadamard-type fractional differential equations, inclusions and inequalities
[3]  
Ahmad B, 2017, J NONLINEAR FUNCT AN, DOI 10.23952/jnfa.2017.52
[4]   New Existence Results for Nonlinear Fractional Differential Equations with Three-Point Integral Boundary Conditions [J].
Ahmad, Bashir ;
Ntouyas, Sotiris K. ;
Alsaedi, Ahmed .
ADVANCES IN DIFFERENCE EQUATIONS, 2011,
[5]   On fractional differential inclusions with anti-periodic type integral boundary conditions [J].
Ahmad, Bashir ;
Ntouyas, Sotiris K. ;
Alsaedi, Ahmed .
BOUNDARY VALUE PROBLEMS, 2013,
[6]  
Ahmad S. K., 2018, FRAC DIFFER CALC, V8, P111, DOI DOI 10.7153/FDC-2018-08-07
[7]  
[Anonymous], 2012, ELECTRON J DIFFER EQ
[8]  
[Anonymous], COMMUN APPL NONLINEA
[9]   Existence results for fractional order functional differential equations with infinite delay [J].
Benchohra, A. ;
Henderson, J. ;
Ntouyas, S. K. ;
Ouahab, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) :1340-1350
[10]   Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type [J].
Diethelm, Kai .
ANALYSIS OF FRACTIONAL DIFFERENTIAL EQUATIONS: AN APPLICATION-ORIENTED EXPOSITION USING DIFFERENTIAL OPERATORS OF CAPUTO TYPE, 2010, 2004 :3-+