Barrier method in nonsmooth convex optimization without convex representation

被引:2
作者
Dutta, Joydeep [1 ]
机构
[1] Indian Inst Technol, Dept Humanities & Social Sci, Econ Grp, Kanpur 208016, Uttar Pradesh, India
关键词
Convex optimization; Nonsmooth optimization; Barrier function;
D O I
10.1007/s11590-014-0811-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this article we want to demonstrate that under mild conditions the barrier method is an effective solution approach for convex optimization problems whose objective is nonsmooth and whose feasible set is described by smooth inequality constraints in which all the constraint functions need not be convex.
引用
收藏
页码:1177 / 1185
页数:9
相关论文
共 11 条
[1]  
[Anonymous], 2010, Foundations of Optimization
[2]  
Bazaraa M.S., 1990, LINEAR PROGRAMMING N, DOI DOI 10.1002/0471787779
[3]  
Borwein JM., 2006, CONVEX ANAL NONLINEA
[4]  
Clake F. H., 1975, T AM MATH SOC, V205, P247
[5]  
Clarke F.H, 1983, OPTIMIZATION NONSMOO
[6]   Optimality conditions in convex optimization revisited [J].
Dutta, Joydeep ;
Lalitha, C. S. .
OPTIMIZATION LETTERS, 2013, 7 (02) :221-229
[7]  
Hiriart-Urruty J.-B., 1985, LECT NOTES EC MATH S, V255, P8
[8]   On convex optimization without convex representation (vol 5, pg 549, 2011) [J].
Lasserre, Jean B. .
OPTIMIZATION LETTERS, 2014, 8 (05) :1795-1796
[9]   On convex optimization without convex representation [J].
Lasserre, Jean B. .
OPTIMIZATION LETTERS, 2011, 5 (04) :549-556
[10]   On representations of the feasible set in convex optimization [J].
Lasserre, Jean Bernard .
OPTIMIZATION LETTERS, 2010, 4 (01) :1-5