ASYMPTOTIC SOLUTION OF SINGULARLY PERTURBED HYBRID DYNAMICAL SYSTEMS

被引:1
作者
Wu, Limeng [1 ]
Zhang, Juan [1 ]
Ni, Mingkang [2 ]
Lu, Haibo [3 ]
机构
[1] Hebei Normal Univ Sci & Technol, Sch Math & Informat Technol, Qinhuangdao 066004, Peoples R China
[2] East China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
[3] Shanghai Inst Technol, Sch Econ & Management, Shanghai 201418, Peoples R China
基金
中国国家自然科学基金;
关键词
optimal control; hybrid dynamical system; singular perturbation; SLOW-FAST DECOMPOSITION; EQUATION;
D O I
10.1016/S0252-9602(16)30081-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a class of optimal control problem for the singularly perturbed hybrid dynamical systems. By means of variational method, we obtain the necessary conditions of the hybrid dynamical systems. Meanwhile, the existence of solution for the hybrid dynamical system is proved by the sewing method and the uniformly valid asymptotic expansion of the optimal trajectory is constructed by the boundary function method. Finally, an example is presented to illustrate the result.
引用
收藏
页码:1457 / 1466
页数:10
相关论文
共 26 条
[1]  
[Anonymous], 2007, SINGULARLY PERTURBED
[2]  
Bensoussan A, 1997, DYN CONTIN DISCRET I, V3, P395
[3]   Multiple Lyapunov functions and other analysis tools for switched and hybrid systems [J].
Branicky, MS .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (04) :475-482
[4]   A unified framework for hybrid control: Model and optimal control theory [J].
Branicky, MS ;
Borkar, VS ;
Mitter, SK .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (01) :31-45
[5]  
Cellier F.E., 1979, COMBINED CONTINUOUS
[6]   Exact slow-fast decomposition of the nonlinear singularly perturbed optimal control problem [J].
Fridman, E .
SYSTEMS & CONTROL LETTERS, 2000, 40 (02) :121-131
[7]  
[郭磊 GUO Lei], 2006, [山东大学学报. 理学版, Journal of Shangdong University. Natural Science], V41, P35
[8]  
KOKOTOVIC P., 1986, Singular perturbation methods in control: analysis and design
[9]   Exact slow-fast decomposition of the singularly perturbed matrix differential Riccati equation [J].
Koskie, S. ;
Coumarbatch, C. ;
Gajic, Z. .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (05) :1401-1411
[10]   Optimal control of partitioned hybrid systems via discrete-time Hamilton-Jacobi theory [J].
Lee, Taeyoung .
AUTOMATICA, 2014, 50 (08) :2062-2069