Extrusion of hydrated lipid suspensions is frequently employed to produce vesicles of uniform size, and the resulting vesicles are often reported to be unilamellar. We describe a method for the quantitative fluorescence image analysis of individual vesicles to obtain information on the size, lamellarity, and structure of vesicles produced by extrusion. In contrast to methods for bulk analysis, fluorescence microscopy provides information about individual vesicles, rather than averaged results, and heterogeneities in vesicle populations can be characterized. Phosphatidylcholine vesicles containing small fractions of biotin-modified phospholipid and fluorescently labeled 7-nitro-2,1,3-benzoxadiazol-4-yl (NBD) phospholipid were immobilized through biotin avidin biotin binding to the surface of a biotin-modified glass coverslip. Biotin was attached to the surface in a mixed cyano-terminated silane monolayer. Initial fluorescence intensities for each immobilized vesicle were recorded, and a solution of membrane impermeable quencher was passed through the flow cell to quench the fluorescence of the outer layer. Fluorescence from individual vesicles was measured by fitting the spots to 2-dimensional Gaussian functions. The integrated signals under the peaks yielded a pre- and postquench intensity. From the fractional loss of intensity, the number and structure of the bilayers in individual vesicles could be quantified; the results showed that extruded vesicles exhibit a distribution of size, lamellarity, and structure.