Ultrathin CeO2 coating for improved cycling and rate performance of Ni-rich layered LiNi0.7Co0.2Mn0.1O2 cathode materials

被引:79
作者
Dong, Shengde [1 ,2 ,3 ]
Zhou, Yuan [1 ,2 ]
Hai, Chunxi [1 ,2 ]
Zeng, Jinbo [1 ,2 ]
Sun, Yanxia [1 ,2 ]
Shen, Yue [1 ,2 ]
Li, Xiang [1 ,2 ]
Ren, Xiufeng [1 ,2 ]
Qi, Guicai [1 ,2 ,3 ]
Zhang, Xinxing [1 ,2 ,3 ]
Ma, Luxiang [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Qinghai Inst Salt Lakes, Key Lab Comprehens & Highly Efficient Utilizat Sa, 18th Xinning Rd, Xining 810008, Qinghai, Peoples R China
[2] Key Lab Salt Lake Resources Chem Qinghai Prov, Xining 810008, Qinghai, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
Lithium-ion battery; Ni-rich layered LiNi0.7Co0.2Mn0.1O2; CeO2; coating; Cathode materials; LITHIUM-ION BATTERIES; ENHANCED ELECTROCHEMICAL PROPERTIES; LINI0.6CO0.2MN0.2O2; CATHODE; SURFACE MODIFICATION; RATE CAPABILITY; LINI0.5CO0.2MN0.3O2; LINI1/3CO1/3MN1/3O2; STABILITY; VOLTAGE; LINI0.5MN1.5O4;
D O I
10.1016/j.ceramint.2018.09.145
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study, we have successfully coated the CeO2 nanoparticles (CeONPs) layer onto the surface of the Ni-rich layered LiNi0.7Co0.2Mn0.1O2 cathode materials by a wet chemical method, which can effectively improve the structural stability of electrode. The X-ray powder diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and X-ray photoelectron spectroscopy (XPS) are used to determine the structure, morphology, elemental composition and electronic state of pristine and surface modified LiNi0.7Co0.2Mn0.1O2. The electrochemical testing indicates that the 0.3 mol% CeO2-coated LiNi0.7Co0.2Mn0.1O2 demonstrates excellent cycling capability and rate performance, the discharge specific capacity is 161.7 mA h g(-1) with the capacity retention of 86.42% after 100 cycles at a current rate of 0.5 C, compared to 135.7 mA h g(-1) and 70.64% for bare LiNi0.7Co0.2Mn0.1O2, respectively. Even at 5 C, the discharge specific capacity is still up to 137.1 mA h g(-1) with the capacity retention of 69.0%, while the NCM only delivers 95.5 mA h g(-1) with the capacity retention of 46.6%. The outstanding electrochemical performance is assigned to the excellent oxidation capacity of CeO2 which can oxidize Ni2+ to Ni3+ and Mn3+ to Mn4+ with the result that suppress the occurrence of Li+/Ni2+ mixing and phase transmission. Furthermore, CeO2 coating layer can protect the structure to avoid the occurrence of side reaction. The CeO2-coated composite with enhanced structural stability, cycling capability and rate performance is a promising cathode material candidate for lithium-ion battery.
引用
收藏
页码:144 / 152
页数:9
相关论文
共 54 条
[1]   Geometry dependence of cathode polarization in solid oxide fuel cells investigated by defined Sr-doped LaMnO3 microelectrodes [J].
Brichzin, V ;
Fleig, J ;
Habermeier, HU ;
Maier, J .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2000, 3 (09) :403-406
[2]   Conductive Polymers Encapsulation To Enhance Electrochemical Performance of Ni-Rich Cathode Materials for Li-Ion Batteries [J].
Cao, Yanbing ;
Qi, Xianyue ;
Hu, Kaihua ;
Wang, Yong ;
Gan, Zhanggen ;
Li, Ying ;
Hu, Guorong ;
Peng, Zhongdong ;
Du, Ke .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (21) :18270-18280
[3]   Jahn-Teller transition in Al3+ doped LiMn2O4 spinel [J].
Capsoni, D ;
Bini, M ;
Chiodelli, G ;
Massarotti, V ;
Mustarelli, P ;
Linati, L ;
Mozzati, MC ;
Azzoni, CB .
SOLID STATE COMMUNICATIONS, 2003, 126 (04) :169-174
[4]   Photocatalytic Degradation of Methyl Orange by CeO2 and Fe-doped CeO2 Films under Visible Light Irradiation [J].
Channei, D. ;
Inceesungvorn, B. ;
Wetchakun, N. ;
Ukritnukun, S. ;
Nattestad, A. ;
Chen, J. ;
Phanichphant, S. .
SCIENTIFIC REPORTS, 2014, 4
[5]   High-performance lithium ion batteries using SiO2-coated LiNi0.5Co0.2Mn0.3O2 microspheres as cathodes [J].
Chen, Chao ;
Tao, Tao ;
Qi, Wen ;
Zeng, Hong ;
Wu, Ying ;
Liang, Bo ;
Yao, Yingbang ;
Lu, Shengguo ;
Chen, Ying .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 709 :708-716
[6]   Role of surface coating on cathode materials for lithium-ion batteries [J].
Chen, Zonghai ;
Qin, Yan ;
Amine, Khalil ;
Sun, Y. -K .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (36) :7606-7612
[7]   High rate performances of the cathode material LiNi1/3Co1/3Mn1/3O2 synthesized using low temperature hydroxide precipitation [J].
Cheng, Cuixia ;
Tan, Long ;
Liu, Haowen ;
Huang, Xintang .
MATERIALS RESEARCH BULLETIN, 2011, 46 (11) :2032-2035
[8]   Effect of Residual Lithium Compounds on Layer Ni-Rich Li[Ni0.7Mn0.3]O2 [J].
Cho, Dae-Hyun ;
Jo, Chang-Heum ;
Cho, Woosuk ;
Kim, Young-Jun ;
Yashiro, Hitoshi ;
Sun, Yang-Kook ;
Myung, Seung-Taek .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (06) :A920-A926
[9]   Effects of CeO2 coating uniformity on high temperature cycle life performance of LiMn2O4 [J].
Cho, Min-Young ;
Roh, Kwang-Chul ;
Park, Sun-Min ;
Lee, Jae-Won .
MATERIALS LETTERS, 2011, 65 (13) :2011-2014
[10]   Investigation of new manganese orthophosphate Mn3(PO4)2 coating for nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode and improvement of its thermal properties [J].
Cho, Woosuk ;
Kim, Sang-Min ;
Lee, Ko-Woon ;
Song, Jun Ho ;
Jo, Yong Nam ;
Yim, Taeeun ;
Kim, Hyuntae ;
Kim, Jeom-Soo ;
Kim, Young-Jun .
ELECTROCHIMICA ACTA, 2016, 198 :77-83