On the Eisenstein functoriality in cohomology for maximal parabolic subgroups

被引:0
|
作者
Clozel, Laurent [1 ]
机构
[1] Univ Paris Saclay, Math, Batiment 307, F-91405 Orsay, France
来源
SELECTA MATHEMATICA-NEW SERIES | 2022年 / 28卷 / 04期
关键词
ARITHMETIC GROUPS; SERIES;
D O I
10.1007/s00029-022-00794-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In his paper, 'On torsion in the cohomology of locally symmetric varieties', Peter Scholze has introduced a new, purely topological method to construct the cohomology classes on arithmetic quotients of symmetric spaces of reductive groups over Q originating from the cohomology of the similar quotients of Levi subgroups of maximal parabolic subgroups. We extend this construction beyond the cases he considers, and, in the complex case, to the cohomology of local systems.
引用
收藏
页数:26
相关论文
共 9 条
  • [1] On the Eisenstein cohomology of odd orthogonal groups
    Gotsbacher, Gerald
    Grobner, Harald
    FORUM MATHEMATICUM, 2013, 25 (02) : 283 - 311
  • [2] Transgressions of the Euler class and Eisenstein cohomology of GLN(Z)
    Bergeron, Nicolas
    Charollois, Pierre
    Garcia, Luis E.
    JAPANESE JOURNAL OF MATHEMATICS, 2020, 15 (02): : 311 - 379
  • [3] Transgressions of the Euler class and Eisenstein cohomology of GLN(Z)
    Nicolas Bergeron
    Pierre Charollois
    Luis E. Garcia
    Japanese Journal of Mathematics, 2020, 15 : 311 - 379
  • [4] Boundary and Eisenstein cohomology of G2 (Z)
    Bajpai, Jitendra
    Guan, Lifan
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2022, 9 (02)
  • [5] KOSTANT'S PROBLEM AND PARABOLIC SUBGROUPS
    Kahrstrom, Johan
    GLASGOW MATHEMATICAL JOURNAL, 2010, 52 : 19 - 32
  • [6] The structure of integral parabolic subgroups of orthogonal groups
    Zemel, Shaul
    JOURNAL OF ALGEBRA, 2020, 559 : 95 - 128
  • [7] The finite subgroups of maximal arithmetic Kleinian groups
    Chinburg, T
    Friedman, E
    ANNALES DE L INSTITUT FOURIER, 2000, 50 (06) : 1765 - +
  • [8] Eisenstein series, cohomology of arithmetic groups, and automorphic L-functions at half integral arguments
    Grbac, Neven
    Schwermer, Joachim
    FORUM MATHEMATICUM, 2014, 26 (06) : 1635 - 1662
  • [9] On the reducibility of scalar generalized Verma modules associated to maximal parabolic subalgebras
    He, Haian
    Kubo, Toshihisa
    Zierau, Roger
    KYOTO JOURNAL OF MATHEMATICS, 2019, 59 (04) : 787 - 813