Interpolation of fuzzy data by using fuzzy splines

被引:14
作者
Abbasbandy, S. [1 ,2 ]
Ezzati, R. [3 ]
Behforooz, H. [4 ]
机构
[1] Islamic Azad Univ, Dept Math, Sci & Res Branch, Tehran 14778, Iran
[2] Imam Khomeini Int Univ, Dept Math, Ghazvin 34194, Iran
[3] Islamic Azad Univ, Dept Math, Karaj Branch, Karaj, Iran
[4] SUNY Coll Technol Utica Rome, Dept Math, Utica, NY 13502 USA
关键词
fuzzy interpolation; fuzzy spline; extension principle; fuzzy number;
D O I
10.1142/S0218488508005078
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we define a new set of spline functions called "Fuzzy Splines" to interpolate fuzzy data. Numerical examples will be presented to illustrate the differences between of using our spline and other interpolations that have been studied before.
引用
收藏
页码:107 / 115
页数:9
相关论文
共 10 条
[1]  
ABBASBANDY S, 2001, J APPL MATH COMPUT, V8, P587
[2]  
Abbasbandy S., 1998, J APPL MATH COMPUT, V5, P457
[3]   APPROXIMATION OF KNOWLEDGE AND FUZZY-SETS [J].
DIAMOND, P ;
RAMER, A .
CYBERNETICS AND SYSTEMS, 1993, 24 (05) :407-417
[4]  
Dubois D., 1980, FUZZY SET SYST
[5]  
HAMMERLIN G, 1989, NUMERISCHE MATH
[6]   INTERPOLATION OF FUZZY DATA [J].
KALEVA, O .
FUZZY SETS AND SYSTEMS, 1994, 61 (01) :63-70
[7]  
Klir G. J., 1997, FUZZY SET THEORY FDN
[8]   Constructing consistent fuzzy surfaces from fuzzy data [J].
Lodwick, WA ;
Santos, J .
FUZZY SETS AND SYSTEMS, 2003, 135 (02) :259-277
[9]   A FUZZY LAGRANGE INTERPOLATION THEOREM [J].
LOWEN, R .
FUZZY SETS AND SYSTEMS, 1990, 34 (01) :33-38
[10]   NOTE ON EXTENSION PRINCIPLE FOR FUZZY SETS [J].
NGUYEN, HT .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 64 (02) :369-380