Mechanisms underlying modulation of neuronal KCNQ2/KCNQ3 potassium channels by extracellular protons

被引:34
作者
Prole, DL
Lima, PA
Marrion, NV
机构
[1] Univ Bristol, Dept Pharmacol, Sch Med Sci, Bristol BS8 1TD, Avon, England
[2] Univ Bristol, MRC, Sch Med Sci, Ctr Synapt Plastic, Bristol BS8 1TD, Avon, England
关键词
acidosis; conductance; K+ channel; M-current; pH;
D O I
10.1085/jgp.200308897
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Changes in extracellular pH occur during both physiological neuronal activity and pathological conditions such as epilepsy and stroke. Such pH changes are known to exert profound effects on neuronal activity and survival. Heteromeric KCNQ2/3 potassium channels constitute a potential target for modulation by H+ ions as they are expressed widely within the CNS and have been proposed to underlie the M-current, an important determinant of excitability in neuronal cells. Whole-cell and single-channel recordings demonstrated a modulation of heterologously expressed KCNQ2/3 channels by extracellular H+ ions. KCNQ2/3 current was inhibited by H+ ions with an IC50 of 52 nM (pH 7.3) at -60 mV, rising to 2 muM (pH 5.7) at -10 mV. Neuronal M-current exhibited a similar sensitivity. Extracellular H+ ions affected two distinct properties of KCNQ2/3 current: the maximum current attainable upon depolarization (Inns) and the voltage dependence of steady-state activation. Reduction of Was antagonized by extracellular K+ ions and affected by mutations within the outer-pore turret, indicating an outer-pore based process. This reduction of was shown to be due primarily to a decrease in the maximum open-probability of single KCNQ2/3 channels. Single-channel open times were shortened by acidosis (pH 5.9), while closed times were increased. Acidosis also recruited a longer-lasting closed state, and caused a switch of single-channel activity from the full-conductance state (similar to8 pS) to a subconductance state (similar to5 pS). A depolarizing shift in the activation curve of macroscopic KCNQ2/3 currents and single KCNQ2/3 channels was caused by acidosis, while alkalosis caused a hyperpolarizing shift. Activation and deactivation kinetics were slowed by acidosis, indicating specific effects of H+ ions on elements involved in gating. Contrasting modulation of homomeric KCNQ2 and KCNQ3 currents revealed that high sensitivity to H+ ions was conferred by the KCNQ3 Subunit.
引用
收藏
页码:775 / 793
页数:19
相关论文
共 74 条
[1]   PHARMACOLOGICAL INHIBITION OF THE M-CURRENT [J].
ADAMS, PR ;
BROWN, DA ;
CONSTANTI, A .
JOURNAL OF PHYSIOLOGY-LONDON, 1982, 332 (NOV) :223-262
[2]   REDUCTION OF SPIKE FREQUENCY ADAPTATION AND BLOCKADE OF M-CURRENT IN RAT CA1 PYRAMIDAL NEURONS BY LINOPIRDINE (DUP-996), A NEUROTRANSMITTER RELEASE ENHANCER [J].
AIKEN, SP ;
LAMPE, BJ ;
MURPHY, PA ;
BROWN, BS .
BRITISH JOURNAL OF PHARMACOLOGY, 1995, 115 (07) :1163-1168
[3]   Use-dependent blockers and exit rate of the last ion from the multi-ion pore of a K+ channel [J].
Baukrowitz, T ;
Yellen, G .
SCIENCE, 1996, 271 (5249) :653-656
[4]   INTRACELLULAR CA2+ BUFFERS DISRUPT MUSCARINIC SUPPRESSION OF CA2+ CURRENT AND M-CURRENT IN RAT SYMPATHETIC NEURONS [J].
BEECH, DJ ;
BERNHEIM, L ;
MATHIE, A ;
HILLE, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (02) :652-656
[5]   A potassium channel mutation in neonatal human epilepsy [J].
Biervert, C ;
Schroeder, BC ;
Kubisch, C ;
Berkovic, SF ;
Propping, P ;
Jentsch, TJ ;
Steinlein, OK .
SCIENCE, 1998, 279 (5349) :403-406
[6]   Modulation and genetic identification of the M channel [J].
Brown, BS ;
Yu, SP .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2000, 73 (2-4) :135-166
[7]  
Brown D A, 1988, Ion Channels, V1, P55
[8]   MUSCARINIC SUPPRESSION OF A NOVEL VOLTAGE-SENSITIVE K+ CURRENT IN A VERTEBRATE NEURON [J].
BROWN, DA ;
ADAMS, PR .
NATURE, 1980, 283 (5748) :673-676
[9]   Characterizing voltage-dependent conformational changes in the Shaker K+ channel with fluorescence [J].
Cha, A ;
Bezanilla, F .
NEURON, 1997, 19 (05) :1127-1140
[10]   A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family [J].
Charlier, C ;
Singh, NA ;
Ryan, SG ;
Lewis, TB ;
Reus, BE ;
Leach, RJ ;
Leppert, M .
NATURE GENETICS, 1998, 18 (01) :53-55