Commutative algebras in Clifford analysis

被引:0
作者
Krasnov, Y [1 ]
机构
[1] Bar Ilan Univ, Dept Math & Stat, IL-52900 Ramat Gan, Israel
来源
PROGRESS IN ANALYSIS, VOLS I AND II | 2003年
关键词
Dirac operator; finite dimensional algebras; algebras isotopy; hyperanalytic function; Clifford algebra; symmetries;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that using a commutative, associative, unital and finite generated algebra of the symmetry operators one can construct the solution to the Dirac equation in not necessary commutative algebras.
引用
收藏
页码:349 / 359
页数:11
相关论文
共 16 条
[1]   Non-associative algebras I. Fundamental concepts and isotopy [J].
Albert, AA .
ANNALS OF MATHEMATICS, 1942, 43 :685-707
[2]  
BALANOV Z, 2003, IN PRESS COMPLEX S 1
[3]  
BRACKX F, 1982, PITMAN RES NOTES MAT, V76, P308
[4]  
Gilbert R.P., 1983, MATH SCI ENG, V163, P281
[5]   Analytic functions of hypercomplex variables [J].
Ketchum, P. W. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1928, 30 (1-4) :641-667
[6]  
Krasnov Y, 2000, PROG PHYSIC, V19, P247
[7]  
Krasnov Y., 2000, COMPLEX VARIABLES TH, V41, P279
[8]  
Lounesto P., 1983, COMPLEX VARIABLES, V2, P139
[9]  
LOUNESTO P, 1979, SPINOR VALUED REGULA
[10]  
Miller W., 1977, ENCY MATH ITS APPL, V4, p[xxx, 285]