k-Gap balancing numbers

被引:0
作者
Rout, S. S. [1 ]
Panda, G. K. [1 ]
机构
[1] Natl Inst Technol, Dept Math, Rourkela 769008, Odisha, India
关键词
Balancing numbers; Lucas-balancing numbers; Pell and associated Pell sequences; Recurrence relations and Binet formula;
D O I
10.1007/s10998-014-0067-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a recent paper, Panda and Rout introduced -gap balancing numbers and studied the case . This paper deals with the study of -gap balancing numbers for arbitrary . For , the -gap balancing numbers partition into two or more disjoint classes. It is always possible to explore two classes of -gap balancing numbers for all and a third class for some specified . However, we have failed to present all classes for arbitrary .
引用
收藏
页码:109 / 121
页数:13
相关论文
共 12 条
[1]  
Behera A, 1999, FIBONACCI QUART, V37, P98
[2]   HOUSE PROBLEM [J].
FINKELSTEIN, R .
AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (10) :1082-+
[3]  
Ingram P., 2005, C R MATH ACAD SCI R, V27, P105
[4]  
Liptai K, 2004, FIBONACCI QUART, V42, P330
[5]   Generalized balancing numbers [J].
Liptai, Kalman ;
Luca, Florian ;
Pinter, Akos ;
Szalay, Laszlo .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2009, 20 (01) :87-100
[6]  
Mollin R. A., 2004, FUNDAMENTAL NUMBER T
[7]  
Panda GK, 2007, FIBONACCI QUART, V45, P265
[8]  
Panda GK, 2013, FIBONACCI QUART, V51, P239
[9]  
Panda G.K., 2009, Congr. Numer, V194, P185
[10]  
Ramasamy A.M.S., 2012, INVOLVE, V5, P257