A call to arms for task parallelism in multi-scale materials modeling

被引:26
作者
Barton, Nathan R. [1 ]
Bernier, Joel V. [1 ]
Knap, Jaroslaw [2 ]
Sunwoo, Anne J. [1 ]
Cerreta, Ellen K. [3 ]
Turner, Todd J. [4 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] USA, Res Lab, Aberdeen Proving Ground, MD 21005 USA
[3] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[4] USAF, Res Lab, Wright Patterson AFB, OH 45433 USA
关键词
solids; materials science; multiscale; plasticity; parallelization; finite element methods; POLYCRYSTAL PLASTICITY; DEFORMATION-BEHAVIOR; CRYSTAL PLASTICITY; TEXTURE; MICROSTRUCTURE; ARCHITECTURE; ORIENTATION; PREDICTION; ALGORITHM; EVOLUTION;
D O I
10.1002/nme.3071
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Simulations based on multi-scale material models enabled by adaptive sampling have demonstrated speedup factors exceeding an order of magnitude. The use of these methods in parallel computing is hampered by dynamic load imbalance, with load imbalance measurably reducing the achieved speedup. Here we discuss these issues in the context of task parallelism, showing results achieved to date and discussing possibilities for further improvement. In some cases, the task parallelism methods employed to date are able to restore much of the potential wall-clock speedup. The specific application highlighted here focuses on the connection between microstructure and material performance using a polycrystal plasticity-based multi-scale method. However, the parallel load balancing issues are germane to a broad class of multi-scale problems. Copyright (C) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:744 / 764
页数:21
相关论文
共 70 条
  • [1] A component architecture for high-performance scientific computing
    Allan, Benjamin A.
    Armstrong, Robert
    Bernholdt, David E.
    Bertrand, Felipe
    Chiu, Kenneth
    Dahlgren, Tamara L.
    Damevski, Kostadin
    Elwasif, Wael R.
    Epperly, Thomas G. W.
    Govindaraju, Madhusudhan
    Katz, Daniel S.
    Kohl, James A.
    Krishnan, Manoj
    Kumfert, Gary
    Larson, J. Walter
    Lefantzi, Sophia
    Lewis, Michael J.
    Malony, Allen D.
    McInnes, Lois C.
    Nieplocha, Jarek
    Norris, Boyana
    Parker, Steven G.
    Ray, Jaideep
    Shende, Sameer
    Windus, Theresa L.
    Zhou, Shujia
    [J]. INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2006, 20 (02) : 163 - 202
  • [2] AN ANALYTICAL MICRO-MACRO MODEL FOR TEXTURED POLY[CRYSTALS AT LARGE PLASTIC STRAINS
    ARMINJON, M
    IMBAULT, D
    [J]. INTERNATIONAL JOURNAL OF PLASTICITY, 1994, 10 (07) : 825 - 847
  • [3] Generalized in situ adaptive tabulation for constitutive model evaluation in plasticity
    Arsenlis, A.
    Barton, N. R.
    Becker, R.
    Rudd, R. E.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 196 (1-3) : 1 - 13
  • [4] Ashby S., 2007, MULTIPHYSICS SIMULAT
  • [5] Bader DA, 2008, CH CRC COMP SCI SER, P1
  • [6] Barton N.R., 2009, ELECT BACKSCATTER DI
  • [7] Embedded polycrystal plasticity and adaptive sampling
    Barton, Nathan R.
    Knap, Jaroslaw
    Arsenlis, Athanasios
    Becker, Richard
    Hornung, Richard D.
    Jefferson, David R.
    [J]. INTERNATIONAL JOURNAL OF PLASTICITY, 2008, 24 (02) : 242 - 266
  • [8] BARTON NR, 2008, ASCR PI M US DEP EN
  • [9] Effects of crystal plasticity on materials loaded at high pressures and strain rates
    Becker, R
    [J]. INTERNATIONAL JOURNAL OF PLASTICITY, 2004, 20 (11) : 1983 - 2006
  • [10] Ring fragmentation predictions using the Gurson model with material stability conditions as failure criteria
    Becker, R
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2002, 39 (13-14) : 3555 - 3580