Numerical Analysis of the Feldkamp-Davis-Kress Effect on Industrial X-Ray Computed Tomography for Dimensional Metrology

被引:6
作者
Xue, Lin [1 ]
Suzuki, Hiromasa [1 ]
Ohtake, Yutaka [1 ]
Fujimoto, Hiroyuki [2 ]
Abe, Makoto [2 ]
Sato, Osamu [2 ]
Takatsuji, Toshiyuki [2 ]
机构
[1] Univ Tokyo, RCAST, Bunkyo Ku, Tokyo 1538904, Japan
[2] Natl Inst Adv Ind Sci & Technol, Natl Metrol Inst Japan, Tsukuba, Ibaraki 3058563, Japan
关键词
FDK; X-ray computed tomography; dimensional metrology; measurement accuracy; numerical phantom;
D O I
10.1115/1.4028942
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
X-ray computed tomography (CT) can nondestructively inspect an object and can clearly, accurately, and intuitively display its internal structure, composition, texture, and damage. In industry this technology was initially used for material analysis and nondestructive testing and evaluation. Recently, as an alternative to optical and tactile measurement devices, CT has entered industrial use for dimensional metrology. Unfortunately, industrial-level accuracy is very difficult to attain with CT for various reasons. In this paper we analyze one of the most serious effects, the Feldkamp-Davis-Kress (FDK) effect, which can be observed in most of the common X-ray CT scanners with a cone beam. The FDK is the reconstruction algorithm widely accepted as a standard reconstruction method for cone-beam type of CT because of its computation efficiency. However, this algorithm merely provides an approximate result. An accurate measurement result can be obtained only in the case of small cone angle. We aim at analyzing the FDK effect independently from other kinds of artifacts. In a practical CT scanning situation, various kinds of artifacts appear in the reconstruction results; thus, we apply a simulation to obtain projection images without noise (scattering, beam hardening, etc.). Then, the FDK algorithm is applied to these projection images to reconstruct CT images so that only the FDK effect can be observed in the reconstructed CT images. Based on this approach, we conducted quantitative analysis on the FDK effect using numerical phantoms of the sphere and stepped cylinders that may be adopted as ISO reference standards for dimensional metrology using X-ray CT scanners. This paper describes the evaluation workflow and discusses the cause of the FDK effect on the measurement of the sphere and the stepped cylinders. Particular attention is given to the evaluation of the error distribution feature on different spatial positions. After discussing the error feature, a method for improving measurement accuracy is proposed.
引用
收藏
页数:8
相关论文
共 8 条
  • [1] [Anonymous], P SIGGRAPH 87, DOI DOI 10.1145/37401.37422
  • [2] PRACTICAL CONE-BEAM ALGORITHM
    FELDKAMP, LA
    DAVIS, LC
    KRESS, JW
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1984, 1 (06): : 612 - 619
  • [3] Hsieh J, 2003, COMPUT TOMOGR, P2
  • [4] X-ray computed tomography
    Kalender, Willi A.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2006, 51 (13) : R29 - R43
  • [5] Computed tomography for dimensional metrology
    Kruth, J. P.
    Bartscher, M.
    Carmignato, S.
    Schmitt, R.
    De Chiffre, L.
    Weckenmann, A.
    [J]. CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2011, 60 (02) : 821 - 842
  • [6] REIMERS P, 1983, MATER EVAL, V41, P732
  • [7] Tan Y., 2011, INT S DIG IND RAD CO
  • [8] Welkenhuyzen F, 2009, OPTIME IND COMPUTER