Temperature-Dependence of an Amorphous Organic Thin Film Polariton Laser

被引:9
作者
Qu, Yue [3 ]
Hou, Shaocong [3 ]
Forrest, Stephen R. [1 ,2 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Dept Phys, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
关键词
strong coupling; light-matter interaction; cavity; polariton lasing; exciton;
D O I
10.1021/acsphotonics.9b01656
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Since its first observation, the polariton lasing threshold in organic films has been anomalously high, given that Bosonic condensation should occur at vanishingly small pumping powers. Here, we investigate the temperature dependence of a polariton laser employing an amorphous organic thin film, 2,7-bis[9,9-di(4- methylphenyl)-fluoren-2-yl]-9,9-di(4- methylphenyl)fluorene, in a vertical optical microcavity. An increase in laser threshold is observed at temperatures <45 K, while the threshold remains unchanged as the temperature increases up to room temperature. In contrast, the energy dispersion characteristic of cavity polaritons is independent of temperature. At low temperature, an energy relaxation bottleneck along the polariton dispersion takes place below threshold. The bottleneck is found to be responsible for the anomalous increase in threshold with decreasing temperature. As the pumping power increases, amplified spontaneous emission (ASE) is observed prior to the onset of lasing. We also study the photoluminescence of the neat organic film versus temperature to explain the origin of the bottleneck in the exciton polariton dispersion.
引用
收藏
页码:867 / 872
页数:6
相关论文
共 18 条
[1]   Room Temperature Electrically Injected Polariton Laser [J].
Bhattacharya, Pallab ;
Frost, Thomas ;
Deshpande, Saniya ;
Baten, Md Zunaid ;
Hazari, Arnab ;
Das, Ayan .
PHYSICAL REVIEW LETTERS, 2014, 112 (23)
[2]   Room-temperature polariton lasing in semiconductor microcavities [J].
Christopoulos, S. ;
von Hogersthal, G. Baldassarri Hoger ;
Grundy, A. J. D. ;
Lagoudakis, P. G. ;
Kavokin, A. V. ;
Baumberg, J. J. ;
Christmann, G. ;
Butte, R. ;
Feltin, E. ;
Carlin, J. -F. ;
Grandjean, N. .
PHYSICAL REVIEW LETTERS, 2007, 98 (12)
[3]   A Yellow Polariton Condensate in a Dye Filled Microcavity [J].
Cookson, Tamsin ;
Georgiou, Kyriacos ;
Zasedatelev, Anton ;
Grant, Richard T. ;
Virgili, Tersilla ;
Cavazzini, Marco ;
Galeotti, Francesco ;
Clark, Caspar ;
Berloff, Natalia G. ;
Lidzey, David G. ;
Lagoudakis, Pavlos G. .
ADVANCED OPTICAL MATERIALS, 2017, 5 (18)
[4]   Strong coupling of collective intermolecular vibrations in organic materials at terahertz frequencies [J].
Damari, Ran ;
Weinberg, Omri ;
Krotkov, Daniel ;
Demina, Natalia ;
Akulov, Katherine ;
Golombek, Adina ;
Schwartz, Tal ;
Fleischer, Sharly .
NATURE COMMUNICATIONS, 2019, 10 (1)
[5]  
Daskalakis KS, 2014, NAT MATER, V13, P272, DOI [10.1038/NMAT3874, 10.1038/nmat3874]
[6]   Condensation of semiconductor microcavity exciton polaritons [J].
Deng, H ;
Weihs, G ;
Santori, C ;
Bloch, J ;
Yamamoto, Y .
SCIENCE, 2002, 298 (5591) :199-202
[7]   An exciton-polariton laser based on biologically produced fluorescent protein [J].
Dietrich, Christof P. ;
Steude, Anja ;
Tropf, Laura ;
Schubert, Marcel ;
Kronenberg, Nils M. ;
Ostermann, Kai ;
Hoefling, Sven ;
Gather, Malte C. .
SCIENCE ADVANCES, 2016, 2 (08)
[8]   Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers [J].
Imamoglu, A ;
Ram, RJ ;
Pau, S ;
Yamamoto, Y .
PHYSICAL REVIEW A, 1996, 53 (06) :4250-4253
[9]  
Kéna-Cohen S, 2010, NAT PHOTONICS, V4, P371, DOI [10.1038/NPHOTON.2010.86, 10.1038/nphoton.2010.86]
[10]   TORSIONAL FREQUENCY OF THE BIPHENYL MOLECULE - COMMENT [J].
KIRIN, D .
JOURNAL OF PHYSICAL CHEMISTRY, 1988, 92 (12) :3691-3692