THE CENTRAL POLYNOMIALS FOR THE GRASSMANN ALGEBRA

被引:19
作者
Brandao, Antonio Pereira, Jr. [1 ]
Koshlukov, Plamen [2 ]
Krasilnikov, Alexei [3 ]
da Silva, Elida Alves [4 ]
机构
[1] Univ Fed Campina Grande, UAME CCT, BR-58109970 Campina Grande, PB, Brazil
[2] Univ Estadual Campinas, IMECC, BR-13083970 Campinas, SP, Brazil
[3] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
[4] Univ Fed Goias, Dept Matemat, BR-75705220 Catalao, GO, Brazil
基金
巴西圣保罗研究基金会;
关键词
IDENTITIES;
D O I
10.1007/s11856-010-0074-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we describe the central polynomials for the infinite-dimensional unitary Grassmann algebra G over an infinite field F of characteristic not equal 2. We exhibit a set of polynomials that generates the vector space C( G) of the central polynomials of G as a T-space. Using a deep result of Shchigolev we prove that if char F = p > 2 then the T-space C( G) is not finitely generated. Moreover, over such a field F, C( G) is a limit T-space, that is, C( G) is not a finitely generated T-space but every larger T-space W not greater than or equal to C( G) is. We obtain similar results for the infinite-dimensional non-unitary Grassmann algebra H as well.
引用
收藏
页码:127 / 144
页数:18
相关论文
共 24 条
[1]   On the Grassmann T-space [J].
Bekh-Ochir, Chuluundorj ;
Riley, David .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2008, 7 (03) :319-336
[2]   No associative PI-algebra coincides with its commutant [J].
Belov, AY .
SIBERIAN MATHEMATICAL JOURNAL, 2003, 44 (06) :969-980
[3]  
Chiripov PlamenZh., 1981, PLISKA STUD MATH BUL, V2, P103
[4]   Central polynomials in the matrix algebra of order two [J].
Colombo, J ;
Koshlukov, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 377 :53-67
[5]  
Drensky V., 2004, Advanced Courses in Mathematics
[6]  
Drensky V., 1999, FREE ALGEBRAS PI ALG
[7]   INVARIANTS AND THE RING OF GENERIC MATRICES [J].
FORMANEK, E .
JOURNAL OF ALGEBRA, 1984, 89 (01) :178-223
[8]   CENTRAL POLYNOMIALS FOR MATRIX RINGS [J].
FORMANEK, E .
JOURNAL OF ALGEBRA, 1972, 23 (01) :129-&
[9]   On the identities of the Grassmann algebras in characteristic p>0 [J].
Giambruno, A ;
Koshlukov, P .
ISRAEL JOURNAL OF MATHEMATICS, 2001, 122 (1) :305-316
[10]  
Giambruno A., 2005, Polynomial Identities and Asymptotic Methods