Assessing WRF model parameter sensitivity: A case study with 5 day summer precipitation forecasting in the Greater Beijing Area

被引:68
作者
Di, Zhenhua [1 ,2 ]
Duan, Qingyun [1 ]
Gong, Wei [1 ]
Wang, Chen [1 ,3 ]
Gan, Yanjun [1 ]
Quan, Jiping [1 ]
Li, Jianduo [1 ]
Miao, Chiyuan [1 ]
Ye, Aizhong [1 ]
Tong, Charles [3 ]
机构
[1] Beijing Normal Univ, Coll Global Change & Earth Syst Sci, Beijing 100875, Peoples R China
[2] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing, Peoples R China
[3] Lawrence Livermore Natl Lab, Livermore, CA USA
关键词
WRF model parameter sensitivities; global sensitivity analysis; uncertainty quantification; WRF model calibration; MOAT method; NUMERICAL WEATHER-PREDICTION; DATA ASSIMILATION; MESOSCALE MODEL; PART I; STATE; SIMULATION; CONVECTION; SYSTEM; SCHEME; TESTS;
D O I
10.1002/2014GL061623
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
A global sensitivity analysis method was used to identify the parameters of the Weather Research and Forecasting (WRF) model that exert the most influence on precipitation forecasting. Twenty-three adjustable parameters were selected from seven physical components of the WRF model. The sensitivity was evaluated based on skill scores calculated over nine 5 day precipitation forecasts during the summer seasons from 2008 to 2010 in the Greater Beijing Area in China. We found that eight parameters are more sensitive than others. Storm type seems to have no impact on the list of sensitive parameters but does influence the degree of sensitivity. We also examined the physical interpretation of parameter sensitivity. This analysis is useful for further optimization of the WRF model parameters to improve precipitation forecasting.
引用
收藏
页码:579 / 587
页数:9
相关论文
共 63 条
[1]   Ensemble-based simultaneous state and parameter estimation with MM5 [J].
Aksoy, Altug ;
Zhang, Fuqing ;
Nielsen-Gammon, John W. .
GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (12)
[2]  
[Anonymous], 1995, DESCRIPTION 5 GENERA
[3]  
[Anonymous], 2007, Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models M
[4]  
[Anonymous], PSU NCAR MESOSCALE M
[5]  
[Anonymous], 2008, LECT NOTES COMPUTATI, DOI [DOI 10.1007/978-3-540-77362-7_12, DOI 10.1007/978-3-540077362-712]
[6]   Parameter sensitivity analysis for different complexity land surface models using multicriteria methods [J].
Bastidas, L. A. ;
Hogue, T. S. ;
Sorooshian, S. ;
Gupta, H. V. ;
Shuttleworth, W. J. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D20)
[7]   Exploring Perturbed Physics Ensembles in a Regional Climate Model [J].
Bellprat, Omar ;
Kotlarski, Sven ;
Luethi, Daniel ;
Schaer, Christoph .
JOURNAL OF CLIMATE, 2012, 25 (13) :4582-4599
[8]   Simulating convective events using a high-resolution mesoscale model [J].
Bernardet, LR ;
Grasso, LD ;
Nachamkin, JE ;
Finley, CA ;
Cotton, WR .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2000, 105 (D11) :14963-14982
[9]   An effective screening design for sensitivity analysis of large models [J].
Campolongo, Francesca ;
Cariboni, Jessica ;
Saltelli, Andrea .
ENVIRONMENTAL MODELLING & SOFTWARE, 2007, 22 (10) :1509-1518
[10]  
Chen F, 2001, MON WEATHER REV, V129, P569, DOI 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO