Visual Privacy Protection in Mobile Image Recognition Using Protective Perturbation

被引:6
作者
Ye, Mengmei [1 ]
Tang, Zhongze [2 ]
Huy Phan [2 ]
Xie, Yi [2 ]
Yuan, Bo [2 ]
Wei, Sheng [2 ]
机构
[1] IBM Res, Yorktown Hts, NY 10598 USA
[2] Rutgers State Univ, Piscataway, NJ USA
来源
PROCEEDINGS OF THE 13TH ACM MULTIMEDIA SYSTEMS CONFERENCE, MMSYS 2022 | 2022年
基金
美国国家科学基金会;
关键词
Visual privacy; image recognition; adversarial perturbation; ROBUSTNESS;
D O I
10.1145/3524273.3528189
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Deep neural networks (DNNs) have been widely adopted in mobile image recognition applications. Considering intellectual property and computation resources, the image recognition model is often deployed at the service provider end, which takes input images from the user's mobile device and accomplishes the recognition task. However, from the user's perspective, the input images could contain sensitive information that is subject to visual privacy concerns, and the user must protect the privacy while offloading them to the service provider. To address the visual privacy issue, we develop a protective perturbation generator at the user end, which adds perturbations to the input images to prevent privacy leakage. Meanwhile, the image recognition model still runs at the service provider end to recognize the protected images without the need of being re-trained. Our evaluations using the CIFAR-10 dataset and 8 image recognition models demonstrate effective visual privacy protection while maintaining high recognition accuracy. Also, the protective perturbation generator achieves premium timing performance suitable for real-time image recognition applications.
引用
收藏
页码:164 / 176
页数:13
相关论文
共 50 条
[21]   Enabling Simultaneous Content Regulation and Privacy Protection for Cloud Storage Image [J].
Hu, Guiqiang ;
Li, Hongwei ;
Xu, Guowen ;
Ma, Xinqiang .
IEEE TRANSACTIONS ON CLOUD COMPUTING, 2023, 11 (01) :111-127
[22]   Dual Protection for Image Privacy and Copyright via Traceable Adversarial Examples [J].
Li, Ming ;
Yang, Zhaoli ;
Wang, Tao ;
Zhang, Yushu ;
Wen, Wenying .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (12) :13401-13412
[23]   Mobile Visual Search from Dynamic Image Databases [J].
Chen, Xi ;
Koskela, Markus .
IMAGE ANALYSIS: 17TH SCANDINAVIAN CONFERENCE, SCIA 2011, 2011, 6688 :196-205
[24]   Enabling Privacy with Transfer Learning for Image Classification DNNs on Mobile Devices [J].
Seiderer, Andreas ;
Dietz, Michael ;
Aslan, Ilhan ;
Andre, Elisabeth .
GOODTECHS '18: PROCEEDINGS OF THE 4TH EAI INTERNATIONAL CONFERENCE ON SMART OBJECTS AND TECHNOLOGIES FOR SOCIAL GOOD (GOODTECHS), 2018, :25-30
[25]   Hashing Fake: Producing Adversarial Perturbation for Online Privacy Protection Against Automatic Retrieval Models [J].
Zhang, Xingwei ;
Zheng, Xiaolong ;
Mao, Wenji ;
Zeng, Daniel Dajun ;
Wang, Fei-Yue .
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (06) :3241-3251
[26]   Improved VGG Algorithm for Visual Prosthesis Image Recognition [J].
Li, Zhiguang ;
Li, Baitao ;
Jahng, Surng Gahb ;
Jung, Changyong .
IEEE ACCESS, 2024, 12 :45727-45739
[27]   Privacy-Preserving Mechanisms for Multi-Label Image Recognition [J].
Xu, Honghui ;
Cai, Zhipeng ;
Li, Wei .
ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2022, 16 (04)
[28]   Privacy protection vs. utility in visual data An objective evaluation framework [J].
Erdelyi, Adam ;
Winkler, Thomas ;
Rinner, Bernhard .
MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (02) :2285-2312
[29]   MLVPP: Multilevel Visual Privacy Protection via Thumbnail Preservation and Key Sharing [J].
Wen, Wenying ;
Huang, Haigang ;
Qi, Shuren ;
Zhang, Yushu ;
Fang, Yuming .
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2025, 12 (01) :140-151
[30]   Privacy protection vs. utility in visual dataAn objective evaluation framework [J].
Ádám Erdélyi ;
Thomas Winkler ;
Bernhard Rinner .
Multimedia Tools and Applications, 2018, 77 :2285-2312