Signed Domination Number of the Directed Cylinder

被引:3
作者
Wang, Haichao [1 ]
Kim, Hye Kyung [2 ]
机构
[1] Shanghai Univ Elect Power, Dept Math, Shanghai 200090, Peoples R China
[2] Daegu Catholic Univ, Dept Math Educ, Gyongsan 38430, South Korea
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 12期
基金
新加坡国家研究基金会; 上海市自然科学基金;
关键词
signed domination number; signed dominating function; cartesian product; directed path; directed cycle; CARTESIAN PRODUCT; LOWER BOUNDS;
D O I
10.3390/sym11121443
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In a digraph D = (V (D), A(D)), a two-valued function f : V (D) -> {-1,1} defined on the vertices of D is called a signed dominating function if f(N- [v]) >= 1 for every v in D. The weight of a signed dominating function is f (V(D)) = Sigma(v is an element of v(D)) f (v). The signed domination number gamma(s) (D) is the minimum weight among all signed dominating functions of D. Let P-m x C-n be the Cartesian product of directed path P-m and directed cycle C-n. In this paper, the exact value of gamma(s) (P-m x C-n ) is determined for any positive integers m and n.
引用
收藏
页数:10
相关论文
共 29 条
[1]  
[Anonymous], 2019, SYMMETRY BASEL, DOI DOI 10.3390/SYM11091165
[2]  
[Anonymous], 2011, DISCRETE APPL MATH
[3]  
[Anonymous], ASIAN J MATH COMPUT
[4]   Total Weak Roman Domination in Graphs [J].
Cabrera Martinez, Abel ;
Montejano, Luis P. ;
Rodriguez-Velazquez, Juan A. .
SYMMETRY-BASEL, 2019, 11 (06)
[5]  
Chartrand G., 2015, Graphs & Digraphs, V6, P465, DOI [10.1201/b19731, DOI 10.1201/B19731]
[6]   Lower bounds on several versions of signed domination number [J].
Chen, Weidong ;
Song, Enmin .
DISCRETE MATHEMATICS, 2008, 308 (10) :1837-1846
[7]  
Crevals S, 2015, AUSTRALAS J COMB, V61, P192
[8]  
Dunbar J.E., 1995, GRAPH THEORY COMBINA, V1, P311
[9]   Signed domination in regular graphs [J].
Favaron, O .
DISCRETE MATHEMATICS, 1996, 158 (1-3) :287-293
[10]   Signed domination in regular graphs and set-systems [J].
Füredi, Z ;
Mubayi, D .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1999, 76 (02) :223-239