Non-small cell lung carcinoma histopathological subtype phenotyping using high-dimensional multinomial multiclass CT radiomics signature

被引:61
作者
Khodabakhshi, Zahra [1 ]
Mostafaei, Shayan [2 ,3 ]
Arabi, Hossein [4 ]
Oveisi, Mehrdad [5 ,6 ]
Shiri, Isaac [4 ]
Zaidi, Habib [4 ,7 ,8 ,9 ]
机构
[1] Iran Univ Med Sci, Rajaie Cardiovasc Med & Res Ctr, Tehran, Iran
[2] Kermanshah Univ Med Sci, Sch Hlth, Dept Biostat, Kermanshah, Iran
[3] Univ Tehran Med Sci, Rheumatol Res Ctr, Epidemiol & Biostat Unit, Tehran, Iran
[4] Geneva Univ Hosp, Div Nucl Med & Mol Imaging, CH-1211 Geneva 4, Switzerland
[5] Univ British Columbia, Dept Comp Sci, Vancouver, BC, Canada
[6] Kings Coll London, Fac Life Sci & Med, Comprehens Canc Ctr, Sch Canc & Pharmaceut Sci, London, England
[7] Univ Geneva, Geneva Univ Neuroctr, Geneva, Switzerland
[8] Univ Groningen, Univ Med Ctr Groningen, Dept Nucl Med & Mol Imaging, Groningen, Netherlands
[9] Univ Southern Denmark, Dept Nucl Med, Odense, Denmark
基金
瑞士国家科学基金会;
关键词
NSCLC; Histopathology; Radiomics; CT; High-dimensional multinomial classification; FEATURE-SELECTION; RISK-FACTORS; CANCER; CLASSIFICATION; FEATURES; EPIDEMIOLOGY; VARIABILITY; SURVIVAL; TUMORS; SIZE;
D O I
10.1016/j.compbiomed.2021.104752
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Objective: The aim of this study was to identify the most important features and assess their discriminative power in the classification of the subtypes of NSCLC. Methods: This study involved 354 pathologically proven NSCLC patients including 134 squamous cell carcinoma (SCC), 110 large cell carcinoma (LCC), 62 not other specified (NOS), and 48 adenocarcinoma (ADC). In total, 1433 radiomics features were extracted from 3D volumes of interest drawn on the malignant lesion identified on CT images. Wrapper algorithm and multivariate adaptive regression splines were implemented to identify the most relevant/discriminative features. A multivariable multinomial logistic regression was employed with 1000 bootstrapping samples based on the selected features to classify four main subtypes of NSCLC. Results: The results revealed that the texture features, specifically gray level size zone matrix features (GLSZM), were the significant indicators of NSCLC subtypes. The optimized classifier achieved an average precision, recall, F1-score, and accuracy of 0.710, 0.703, 0.706, and 0.865, respectively, based on the selected features by the wrapper algorithm. Conclusions: Our CT radiomics approach demonstrated impressive potential for the classification of the four main histological subtypes of NSCLC, It is anticipated that CT radiomics could be useful in treatment planning and precision medicine.
引用
收藏
页数:9
相关论文
共 67 条
[1]  
Abd Elrahman S.M., 2013, Journal of Network and Innovative Computing, V1, P332
[2]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[3]  
Ali A, 2015, Int. J. Adv. Soft Comput. Appl., V7, P176
[4]   The promise of artificial intelligence and deep learning in PET and SPECT imaging [J].
Arabi, Hossein ;
AkhavanAllaf, Azadeh ;
Sanaat, Amirhossein ;
Shiri, Isaac ;
Zaidi, Habib .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 83 :122-137
[5]   Computed tomography screening and lung cancer outcomes [J].
Bach, Peter B. ;
Jett, James R. ;
Pastorino, Ugo ;
Tockman, Melvyn S. ;
Swensen, Stephen J. ;
Begg, Colin B. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2007, 297 (09) :953-961
[6]   The complex relationship between lung tumor volume and survival in patients with non-small cell lung cancer treated by definitive radiotherapy: A prospective, observational prognostic factor study of the Trans-Tasman Radiation Oncology Group (TROG 99.05) [J].
Ball, David L. ;
Fisher, Richard J. ;
Burmeister, Bryan H. ;
Poulsen, Michael G. ;
Graham, Peter H. ;
Penniment, Michael G. ;
Vinod, Shalini K. ;
Krawitz, Hedley E. ;
Joseph, David J. ;
Wheeler, Greg C. ;
McClure, Bev E. .
RADIOTHERAPY AND ONCOLOGY, 2013, 106 (03) :305-311
[7]   Non-invasive classification of non-small cell lung cancer: a comparison between random forest mode utilising radiomic and semantic features [J].
Bashir, Usman ;
Kawa, Bhavin ;
Siddique, Muhammad ;
Mak, Sze Mun ;
Nair, Arjun ;
Mclean, Emma ;
Bille, Andrea ;
Goh, Vicky ;
Cook, Gary .
BRITISH JOURNAL OF RADIOLOGY, 2019, 92 (1099)
[8]   Intraoperative fine needle aspirations - diagnosis and typing of lung cancer in small biopsies: challenges and limitations [J].
Biancosino, Christian ;
Krueger, Marcus ;
Vollmer, Ekkehard ;
Welker, Lutz .
DIAGNOSTIC PATHOLOGY, 2016, 11
[9]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)
[10]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057