Automatic segmentation of the brain stroke lesions from MR flair scans using improved U-net framework

被引:5
作者
Khezrpour, Samrand [1 ]
Seyedarabi, Hadi [1 ,2 ]
Razavi, Seyed Naser [3 ]
Farhoudi, Mehdi [4 ]
机构
[1] Tabriz Univ Med Sci, Sch Adv Med Sci, Biomed Engn Dept, Tabriz, Iran
[2] Univ Tabriz, Fac Elect & Comp Engn, Tabriz, Iran
[3] Trinity Coll Dublin, ADAPT Ctr, Dublin, Ireland
[4] Tabriz Univ Med Sci, Neurosci Res Ctr NSRC, Tabriz, Iran
关键词
Medical image segmentation; Deep learning; Convolutional networks; And stroke lesion images; IMAGE;
D O I
10.1016/j.bspc.2022.103978
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Background: Magnetic resonance imaging (MRI) can reliably diagnose ischemic stroke. Stroke is an acute vascular illness of the brain that can lead to long-term death and disability. The majority of stroke patients have acute ischemic lesions. These stroke lesions are treatable underneath correct diagnosing and treatment. Despite the fact that fluid attenuation inversion recovery (FLAIR) images are susceptible to detecting these types of lesions, clinicians find it difficult to locate and measure them manually.New method: In this research, we present a methodology for autonomously segmenting stroke lesions in the FLAIR modality images. A deep supervised U-Net architecture is used in our proposed network, which incorporates Blocks made up of five parallel layers.Results & comparison with existing methods: We assessed the proposed framework On the MICCAI 2015 Ischemic Stroke Lesion Segmentation dataset (ISLES2015) Challenge. In conclusion, the dice coefficient attained a mean accuracy of 0.89.Conclusions: Experiments show that compared to traditional machine learning methods, proposed method shows better performance. The experiment results have already confirmed that the proposed U-Net model is a better tool for dealing with segmentation problems that are related to others on similar datasets.
引用
收藏
页数:7
相关论文
共 50 条
[21]   A Novel ConvLSTM-Based U-net for Improved Brain Tumor Segmentation [J].
Almiahi, Osama Majeed Hilal ;
Albu-Salih, Alaa Taima ;
Alhajim, Dhafer .
IEEE ACCESS, 2024, 12 :157346-157358
[22]   RMU-Net: A Novel Residual Mobile U-Net Model for Brain Tumor Segmentation from MR Images [J].
Saeed, Muhammad Usman ;
Ali, Ghulam ;
Bin, Wang ;
Almotiri, Sultan H. ;
AlGhamdi, Mohammed A. ;
Nagra, Arfan Ali ;
Masood, Khalid ;
ul Amin, Riaz .
ELECTRONICS, 2021, 10 (16)
[23]   Research on thyroid nodule segmentation using an improved U-Net network [J].
Xu, Peng .
REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2024, 40 (02)
[24]   3D Automatic Brain Tumor Segmentation Using a Multiscale Input U-Net Network [J].
Gonzalez, S. Rosas ;
Sekou, T. Birgui ;
Hidane, M. ;
Tauber, C. .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 :113-123
[25]   Automatic segmentation of brain tumor in intraoperative ultrasound images using 3D U-Net [J].
Carton, Francois-Xavier ;
Chabanas, Matthieu ;
Munkvold, Bodil K. R. ;
Reinertsen, Ingerid ;
Noble, Jack H. .
MEDICAL IMAGING 2020: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2021, 11315
[26]   Edge U-Net: Brain tumor segmentation using MRI based on deep U-Net model with boundary information [J].
Allah, Ahmed M. Gab ;
Sarhan, Amany M. ;
Elshennawy, Nada M. .
EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
[27]   MRI Brain Tumour Segmentation Using Multiscale Attention U-Net [J].
Chen, Bonian ;
He, Tao ;
Wang, Weizhuo ;
Han, Yutong ;
Zhang, Jianxin ;
Bobek, Samo ;
Zabukovsek, Simona Sternad .
INFORMATICA, 2024, 35 (04) :751-774
[28]   Brain Tumour Segmentation Using U-net Based Adversarial Networks [J].
Teki, Satyanarayana Murthy ;
Varma, Mohan Krishna ;
Yadav, Anjana K. .
TRAITEMENT DU SIGNAL, 2019, 36 (04) :353-359
[29]   Comparison of tissue segmentation performance between 2D U-Net and 3D U-Net on brain MR Images [J].
Woo, Boyeong ;
Lee, Myungeun .
2021 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC), 2021,
[30]   An Automatic Nuclei Segmentation on Microscopic Images using Deep Residual U-Net [J].
Shree, H. P. Ramya ;
Minavathi ;
Dinesh, M. S. .
INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (10) :571-577