Vertex-transitive generalized Cayley graphs which are not Cayley graphs

被引:11
作者
Hujdurovic, Ademir [1 ,2 ]
Kutnar, Klavdija [1 ,2 ]
Marusic, Dragan [1 ,2 ,3 ]
机构
[1] Univ Primorska, FAMNIT, Koper 6000, Slovenia
[2] Univ Primorska, IAM, Koper 6000, Slovenia
[3] Univ Ljubljana, PEE, Ljubljana 1000, Slovenia
关键词
D O I
10.1016/j.ejc.2014.11.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The concept of generalized Cayley graphs was introduced by Marusic et al. (1992), where it was asked if there exists a vertex-transitive generalized Cayley graph which is not a Cayley graph. In this paper the question is answered in the affirmative with a construction of two infinite families of such graphs. It is also proven that every generalized Cayley graph admits a semiregular automorphism. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:45 / 50
页数:6
相关论文
共 15 条
[1]   LIFTING HAMILTON CYCLES OF QUOTIENT GRAPHS [J].
ALSPACH, B .
DISCRETE MATHEMATICS, 1989, 78 (1-2) :25-36
[2]  
Baik YG, 1998, ALGEBR COLLOQ, V5, P297
[3]   Transitive permutation groups without semiregular subgroups [J].
Cameron, PJ ;
Giudici, M ;
Jones, GA ;
Kantor, WM ;
Klin, MH ;
Marusic, D ;
Nowitz, LA .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 66 :325-333
[4]   Semiregular automorphisms of vertex-transitive graphs of certain valencies [J].
Dobson, Edward ;
Malnic, Aleksander ;
Marusic, Dragan ;
Nowitz, Lewis A. .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (03) :371-380
[5]  
FEIN B, 1981, J REINE ANGEW MATH, V328, P39
[6]  
Ghaderpour E, 2014, ARS MATH CONTEMP, V7, P55
[7]   Quasiprimitive groups with no fixed point free elements of prime order [J].
Giudici, M .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 67 :73-84
[8]   All vertex-transitive locally-quasiprimitive graphs have a semiregular automorphism [J].
Giudici, Michael ;
Xu, Jing .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2007, 25 (02) :217-232
[9]   Characterization of edge-transitive 4-valent bicirculants [J].
Kovacs, Istvan ;
Kuzman, Bostjan ;
Malnic, Aleksander ;
Wilson, Steve .
JOURNAL OF GRAPH THEORY, 2012, 69 (04) :441-463
[10]   Distance-transitive graphs admit semiregular automorphisms [J].
Kutnar, Klavdija ;
Sparl, Primoz .
EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (01) :25-28